
Utilizing Modern Programming Techniques and the
Boost Libraries for Scientific Software Development

Josef Weinbub
Institute for Microelectronics
Technische Universität Wien

Vienna, Austria
weinbub@iue.tuwien.ac.at

Karl Rupp
Institute for Microelectronics
and Institute for Analysis and

Scientific Computing
Technische Universität Wien

Vienna, Austria
rupp@iue.tuwien.ac.at

Siegfried Selberherr
Institute for Microelectronics
Technische Universität Wien

Vienna, Austria
selberherr@iue.tuwien.ac.at

ABSTRACT
Modern programming techniques and libraries provide soft-
ware developers with a vast set of functionality and flex-
ibility. However, applying the associated techniques like
generic, functional, or meta-programming requires advanced
programming skills. In this work we investigate three tasks
in the context of scientific computing, where we utilize mod-
ern programming techniques as well as the Boost libraries.
We introduce our approaches and show that applying those
techniques and the Boost libraries results in highly versatile,
maintainable, compact, and extendible code.

Categories and Subject Descriptors
D.1.0 [Programming Techniques]: General;
D.2.13 [Software Engineering]: Reusable Software

Keywords
C++, Boost, Generic Programming, Meta-Programming,
Functional Programming

1. INTRODUCTION
Modern programming techniques like generic and meta-pro-
gramming are heavily utilized in the Boost libraries to pro-
vide versatile and extendible libraries to support C++ soft-
ware developers [1]. One of the advantages of applying the
Boost libraries is to make use of already available function-
ality, hence, reducing development time. For example, the
Boost Spirit Library (BSL) [2] allows for the implementa-
tion of a versatile, extendible, and high-performance parser
with minimum development effort. Additionally, the Boost
libraries lower the entry barrier for utilizing modern pro-
gramming techniques, like meta-programming. For exam-
ple, the Boost Meta-Programming Library (MPL) [3] as well
as the Boost Fusion Library (BFL) [4] provide algorithms
and datastructures for the compile-time domain. Further-
more, the Boost libraries make upcoming C++ language
features available, before they are formulated in the stan-
dard, hence, enabling the programmer to investigate possi-
bilities on the frontier of the C++ programming language.
The fact that various aspects of Boost have been adopted
to the new C++11 standard underlines the importance and
the influence of the Boost libraries to the overall C++ de-
velopment [5].

In this work we focus on the application of modern C++
techniques and libraries to scientific software development.
The scientific setting hugely benefits from open-source im-
plementations, as available work can be accessed and ex-
tended, which ultimately reduces overall development time.
However, modern programming techniques as well as Boost
libraries, which heavily rely on those techniques, might be
primarily only utilizable by enthusiasts or computer scien-
tists. For example, tag-dispatching, concepts, and traits are
typically not part of a C++ user’s skill set.

However, the application of Boost libraries, and modern
programming techniques in general, by engineering software
tools has expanded over the recent years [6][7]. Generally,
in an academic environment, especially in the context of en-
gineering, the application driven focus on software develop-
ment often supersedes the necessity to invest time and effort
to implement software with a focus on extendibility, main-
tainability, and flexibility. In this work we depict three ap-
plication scenarios of modern programming techniques and
several Boost libraries in the context of scientific comput-
ing. We will show that the additional implementation effort
results in highly extendible, maintainable, compact, and ver-
satile code.

Generally, the tasks are related in the sense that they deal
with a set of components in different contexts. Section 2 in-
troduces an approach for a lightweight scheduler for a com-
ponent framework. The Boost Graph Library (BGL) [8] as
well as the Boost Phoenix Library (BPL) [9] are utilized
to implement a plugin scheduler for sequential and parallel
executions with minimum implementation effort. Section 3
discusses an advanced property-based selection method for a
set of algorithms based on the BFL and the MPL. Section 4
depicts an approach to generalize geometrical algorithms by
utilizing the generic paradigm. The theoretical background
as well as implementations are discussed. Section 5 summa-
rizes the presented topics.

2. LIGHTWEIGHT PLUGIN SCHEDULER
One way to introduce extendibility to a software project is
to aim for an object-oriented framework approach [10][11].
Such an environment can be combined with a pluggable ex-
tension approach to support long lifetime support by in-
creased maintainability and extendibility [12][13][14].

1

Our plugin scheduler is motivated from the area of semicon-
ductor device simulation, yet applicable in a general setting.
A plugin-based framework approach offers the required flex-
ibility to support a heterogenous set of simulation tools as
each tool is wrapped into a plugin and therefore is accessible
by a unified interface. This interface can be utilized by the
framework to drive and control the execution of the tool in
a unified way. An important aspect, however, is, that the
various plugins have different input data requirements, for
example, distributions of various physical quantities. Those
requirements have to be met before the plugin, and ulti-
mately the simulation tool itself, can be executed, as the
input data is vital for the internal simulation algorithm.

2.1 Sequential Execution Flow
Generally, a framework must offer a scheduler which ensures
the proper execution of the set of supported plugins. This
scheduler has to take the various input dependencies into
account and, based on this, impose an ordering of the plug-
ins with regard to their individual execution. Problems like
this are typically referred to as dependence problems, which
can be modeled as a graph. In scenarios, where tasks or jobs
are associated with the vertices of a graph, the graphs are
typically referred to as task graphs [15]. Graphs, where the
nodes refer to tasks and one task cannot be executed before
the preceding nodes are finished, are typically referred to as
precedence graphs [16]. The BGL can be used to represent
such graphs by a versatile and efficient datastructure. Fur-
thermore, the BGL provides graph algorithms which can be
utilized to implement a scheduler for the framework.

In the following, a straightforward approach for a basic sched-
uler based on the BGL is presented. It clearly shows that
with basic BGL skills a scheduler for a plugin framework
can be implemented with a minimum amount of develop-
ment effort. We will show that the approach is flexible,
maintainable, easy-to-use, and extendible.

First, a graph is defined which supports the problem at
hand.

1 typedef boost::adjacency_list <
2 boost::vecS ,
3 boost::vecS ,
4 boost::directedS ,
5 boost::property <boost::vertex_name_t ,std::string >
6 > Graph;
7 Graph graph;

Listing 1: A graph datastructure is defined.

The graph datastructure adjacency_list is customized to
reflect the specific requirements for the graph (Line 1). We
use a std::vector (boost::vecS) datastructure, both for
the vertex and the edge container, as it is not expected
that many vertices and edges are added or removed dur-
ing the execution (Lines 2,3). If that would not be the case,
the std::list (boost::listS) datastructure can be used
as this container supports fast insertions and deletions due
to its doubly-linked list structure. However, this approach
introduces memory overhead, which might be a concern for
huge graphs. To map the execution flow, the graph is a di-
rected graph (boost::directedS; Line 4). Additionally, the
primary algorithm used on the graph, topological_sort,
requires the graph to be a directed acyclic graph.

The term directed refers to the fact that an edge in the graph
points from a source vertex to a sink vertex, whereas acyclic
denotes that there must not be cycles in the graph. Finally,
we associate string data (boost::property<...>) with each
vertex (Line 5), which allows to store the plugin names on
the graph vertices.

The next step is to build-up the graph by adding vertices
and edges, also referred to as nodes and connections, respec-
tively. The datastructure graph is populated with vertices
by traversing the set of active plugins and adding exactly
one node per plugin. In this way a node represents a plugin
in the graph. During this process the dependencies of each
plugin are stored for the subsequent step of connecting the
vertices of the graph to reflect the input/output relations.

In the following code snippet the set of plugins is traversed
and mapped to nodes in the graph. These nodes are then
connected to finally form the graph.

1 for(plugin_iter = plugins .begin ();
2 plugin_iter != plugins .end(); plugin_iter++) {
3 Graph:: vertex_descriptor vertex =
4 boost:: add_vertex((* plugin_iter)->name(), graph);
5 quantities[vertex] = (* plugin_iter)->output ();
6 }

Listing 2: For each plugin a vertex is added to the graph
datastructure.

A set of plugins (plugins) is traversed by an iterator (plugin
_iter; Line 1,2). The identifier string is retrieved by access-
ing a member function name() of the dereferenced iterator
and stored with the newly created graph vertex by utilizing
the BGL provided insertion function (boost::add_vertex;
Lines 3,4). Note that the elements of plugins are point-
ers to the different virtually overloaded plugin objects. The
output data provided by the specific plugin is accessed by
a member function output() and stored in an associative
datastructure quantities as a value for a specific vertex
vertex (Line 5).

At this point all the plugins are mapped to nodes in the
graph datastructure. However, the graph has yet to be es-
tablished by connecting the vertices related to their individ-
ual input/output dependencies:

1 for(plugin_iter = plugins .begin ();
2 plugin_iter != plugins .end(); plugin_iter++) {
3 inputs = plugin_iter ->input ();
4 for(input_iter = inputs.begin ();
5 input_iter != inputs.end(); input_iter++) {
6 /* find the node/plugin which provides the
7 required input */
8 add_edge (source_id , sink_id , graph); }}

Listing 3: The graph is created by connecting the vertices
according to the input and output relations of the individual
plugins.

A set of plugins is traversed by an iterator (Lines 1,2). Note
that for each plugin to be connected in the graph the re-
quired input data set (inputs) is retrieved by a member
function of the individual plugin (input(); Line 3). The
set of inputs is traversed by using an iterator (input_iter;
Lines 4-8). For each input traversed by the iterator, the ver-
tex is determined which provides the requested data as an
output (Lines 6,7).

2

When the vertex is found, a directed edge is added to the
graph, which connects the determined source vertex with
the sink vertex (Line 8). If no such vertex is found, the
dependence is not met and an error indicating that the graph
could not be resolved should be thrown. Figure 1 depicts
an exemplary graph. The varying number of dependencies
between the various plugins represent different quantities.
Further note that a plugin might have more than one input.

In graph theory the number of input and output edges is
typically referred to as in-degree and out-degree, respec-
tively. Generally, the degree of a vertex is understood to
be the number of incident edges. Applied to our problem
at hand, the nodes of the graph have non-constant degree,
as the plugins might have a different number of input and
output edges. Therefore, the scheduler has to be capable of
dealing with varying numbers of inputs and outputs of each
individual plugin.

Plugin A

Plugin B Plugin C

Plugin D Plugin E Plugin F Plugin G

e.g. electrostatic
potential

e.g. heat e.g. current

Figure 1: A plugin dependence graph is shown. A plugin
can have more than one input or output.

At this point the graph is set up and can be analyzed re-
garding the execution order by the so-called topological sort
algorithm [17]. The BGL provides an implementation of this
algorithm, which yields the required execution order. This
ensures that the plugins are only executed, when the indi-
vidual inputs are available. Note that this fact models the
definition of a precedence graph. The algorithm yields the
scheduled sequence of vertices. As those vertices are place-
holders for the actual plugins, the scheduler has to execute
the plugins in exactly the same order as computed by the
topological sort algorithm.

2.2 Parallel Execution Flow
At this point the presented straightforward approach deals
only with a sequential execution flow, meaning that a plugin
is executed one after another on a single computing unit,
for example, a CPU-core of a workstation. This situation
changes in the context of a parallel execution environment,
for which the presented graph approach can be extended to
reflect the requirements of task scheduling for a system of
multiple computing units [18]. Several approaches based on
graphs and on executing different algorithms are available,
for example, depth-first search and breadth-first search. In
the following an approach is depicted to implement a basic
scheduler for scheduling a task graph for a parallel environ-
ment. The approach is based on the so-called list scheduling
technique [16]. The underlying principle is to set up a list
of prioritized tasks. Each task is checked whether or not it
has already been scheduled and if the incident parent tasks
are finished. The list is repeatedly processed until all of the
tasks are scheduled.

Generally, different approaches are available to prioritize the
tasks of a task graph. One of the straightforward approaches
is to use a topologically ordered sequence. Therefore, the
presented sequential execution flow approach can be directly
extended to generate the priority list. In comparison to the
scheduling approach for a single execution flow, the graph
type needs to be changed from a directed graph (directedS)
to a bidirectional graph (bidirectionalS) to provide access
to the parent vertices for a given vertex via the in_edges()
function.

The BGL uses integer values to uniquely identify and repre-
sent vertices. This introduces the need for a mapping from
the integer-based vertices to the actual plugins. Such a map-
ping conveniently allows for the evaluation of the scheduling
based on the graph datastructure and to relate the results
to the actual plugin objects. An exemplary approach to set
up such an associative relation is depicted in the following.
Note that this associative datastructure is also utilized in
Section 2.1.

1 typedef std::map <std::size_t ,
2 boost:: shared_ptr <plugin_base > > PluginMap;
3 PluginMap pluginmap;
4 // define a set of plugin smart pointers
5 boost::shared_ptr <plugin_base > pa(new plugin_a);
6 boost::shared_ptr <plugin_base > pb(new plugin_b);
7 // map the plugins with a specific vertex index
8 pluginmap[0] = pa;
9 pluginmap[1] = pb;

Listing 4: A mapping from the graph vertices to the actual
plugins is provided.

The associative container is declared with the unsigned inte-
gral key type std::size_t, as the indices are only positive
integers. We base our investigations on a straightforward
plugin class hierarchy with virtual function overloads, as
this setup reflects the run-time nature of the stated prob-
lem. Therefore, the PluginMap datastructure holds pointers
to the base class plugin_base of the run-time class hierar-
chy as a value type (Lines 1,2). Plugin smart-pointers are
created (e.g. plugin_a; Lines 5,6) and associated with a spe-
cific vertex index from the present task graph (e.g. pluign-
map[0]=pa; Lines 8,9). The priority list is generated in the
same way as the schedule for the sequential execution flow
by utilizing the topological sort algorithm.

The required steps of checking whether or not a task has
already been scheduled and the parent tasks have finished
the execution can be implemented differently. We aim for
a compact implementation, meaning that with a minimum
amount of user-level code it should be possible to program
an intricate system. We refer the term user-level to the
part of the implementation which is very likely to undergo
maintenance and expansion on a regular basis.

Our approach is to utilize the BPL. This library enables
functional programming in C++, which can result in highly
readable and modular user-level code and therefore signifi-
cantly increases the maintainability and ultimately the ex-
tendibility of the implementation [19]. Furthermore, we will
see, that due to this approach the required lines of code to
implement the whole algorithm are reduced significantly. An
in-depth view on our approach is provided in the following.

3

At first, the core part of the final user-level expression of the
scheduling algorithm is depicted to present the goal of the
whole implementation approach.

1 std::for_each (prioritized.begin(), prioritized.end(),
2 if_(!is_scheduled && is_executable) [execute]);

Listing 5: A one-line implementation of the list scheduling
approach based on the BPL is depicted.

Due to the application of the functional programming para-
digm, more specifically the BPL, the core part of the sched-
uler is minimized to a single line of code. The sequence of
prioritized plugins (prioritized), computed by the topo-
logical sort algorithm, is traversed by utilizing the for_each
traversal (Line 1). The third parameter of the traversal
is utilized to insert a Boost Phoenix functional expression
(if_[..]; Line 2). This expression generates a functor and
is therefore utilizable by the standard traversal algorithm.

In this case the functional expression is a so-called lazy-
statement condition. As an argument for the condition we
utilize two algorithms, named is_scheduled and is_exec-
utable, which model the Boost Phoenix actor concept (Line
2). These algorithms implement the logic for the discussed
list scheduling technique. If the condition is met, the indi-
vidual plugin is enqueued for execution, which, for example,
could mean that the plugin is assigned to the next processor
with the earliest start-time.

For the sake of simplicity, we do not focus on the imple-
mentation of the execute actor. The difference primarily is,
that the executor does not have to access the Boost Graph
datastructure, as its only task is to retrieve the actual plu-
gin object and enqueue it for execution. It is important to
note that the presented code snippet in Listing 5 needs to
be executed repeatedly for the prioritized list, until all tasks
have been scheduled, as the plugins might have to wait until
the input data is available and, therefore, can be executed.

Although the above code snippet is very concise, it requires
the implementation of the applied algorithms within the con-
ditional functional expression. In the following, the imple-
mentation of one of the presented Boost Phoenix actors is
presented, namely the is_executable actor. The implemen-
tations of the other two actors is_scheduled and execute
is analogous in regard to the Boost Phoenix specific imple-
mentation details. Generally, the implementation models
the Boost Phoenix actor concept. For the sake of simplicity,
only the implementation of the functor part is depicted in
Listing 6.

A nested result_type member-type is provided which holds
the return type of the functor (Lines 2, 7). The result type
implementation of the functor models the result_of con-
cept [20]. Two state objects are retrieved from the Boost
Proto expressions provided by the functors argument list,
the graph and the associative plugin-id container (Lines 8,
9, 11, 12). The actor’s arguments are collected in a so-called
environment which itself is part of the context (Line 10).
The plugin_id object is accessed which has been passed as
an argument to the actor (Line 14). This plugin identifier,
which represents a Boost Graph node, is used to access the
actual plugin object which finally should be tested whether
it can be queued for execution.

Note that for the sake of simplicity we skipped the Boost
Phoenix specific implementation details of retrieving the
state objects and the actors arguments. At this point all
the required data is available and the parent plugins can
be determined by utilizing BGL algorithms. The set of in-
coming edges, computed by the in_edges() function, is tra-
versed by an edge iterator ei (Lines 16-23). For each edge
the source vertex is determined by the source() function
(Line 20). The source vertex is mapped to the actual plugin
object by utilizing the find() member-function of the plu-
gin map plugins. The execution state of the parent plugin
is accessed by utilizing the implementation specific state()
member-function. The state is tested whether the parent
is finished. If only one of the parents is not finished, the
plugin under test cannot be executed. Only when all of the
parent plugins have finished their execution, the plugin can
commence execution.

1 struct executable_eval {
2 typedef bool result_type;
3

4 template <typename GraphExpr ,
5 typename PluginMapExpr ,
6 typename Context >
7 result_type
8 operator ()(GraphExpr const& graph_expr ,
9 PluginMapExpr const& plugins_expr ,

10 Context & ctx) const {
11 /* retrieve the graph and plugins objects
12 from the state expressions */
13

14 /* retrieve the plugin id from the context */
15

16 typename graph_traits <
17 Graph >::in_edge_iterator ei ,edge_end ;
18 for(tie(ei,edge_end)=in_edges (plugin_id ,graph);
19 ei != edge_end ; ++ei) {
20 if((plugins .find(source (*ei,graph))
21 ->second)->state() != FINISHED)
22 return false;
23 }
24 return true; } };

Listing 6: An implementation of an algorithm modeling the
Boost Phoenix actor concept is shown.

2.3 Conclusion
The discussed implementation for the sequential flow han-
dles serial execution of a sequence of plugins only. However,
the evaluation of the execution orders requires about 30-50
lines of code, which can be considered to be highly main-
tainable. Regarding the approach for the parallel execution
flow, the sequential implementation can be directly extended
to support scheduling of a task graph for a parallel comput-
ing environment. The presented functional approach has
the benefit of a highly concise formulation of the algorithm.
However, this approach requires some additional code in re-
gard to the algorithm implementations. Approximately 200-
300 lines of code are necessary in addition to the sequential
implementation to implement the parallel version. It is im-
portant to emphasize, however, that only a couple of code
lines are actual user-level code. Generally, the majority of
the implementation resides in the BGL. This ultimately re-
duces the maintenance efforts to a minimum. Furthermore,
as the BGL is a mature library, interface changes in upcom-
ing versions are not to be expected. The utilized topological
sort algorithm is expected to perform well even for large
sets of vertices and plugins respectively, as the algorithm
has a time complexity of O(V +E), with V and E being the
number of vertices and edges in the graph.

4

In regard to the goal of high flexibility and extendibility
for the scheduler, the BGL does not only provide a signifi-
cant set of graph algorithms, but also a sophisticated generic
datastructure which allows to assign weights on nodes and
edges. The ability to associate weights on vertices and edges
enables to model even more complex task-graph schedulers
for parallel environments, for example, to model the network
and processing capabilities of different computing nodes.

3. META PROPERTY-BASED SELECTION
The previous section discussed the scheduling of a set of
components. Another task is to select a subset of those com-
ponents based on certain properties during compile-time. In
this section we give a motivation and depict an application
scenario for such a meta-selection.

Scientific simulations typically deal with sets of algorithms
as, for example, different geometrical algorithms are avail-
able for different geometrical entities. Eventually, a specific
algorithm has to be selected from a set of algorithms based
on certain properties. In a run-time based environment this
decision is naturally made during execution time. However,
if the information for the decision process is already available
during compile-time, a run-time selection results in unneces-
sary overhead, which introduces the need for a compile-time
selection mechanism. This section introduces an approach
based on the BFL and the MPL. First the algorithm is dis-
cussed and second, an implementation is provided.

3.1 Adding Meta-Selection Capabilities
In its essence the selection algorithm determines the subset
of available tools which fulfill the requested properties during
compile-time (Figure 2). The following discussion presents
a compile-time property-based selection approach applied to
the field of mesh generation [21]. This research field provides
a variety of algorithms and publicly available tools, which
eventually introduces the need for a concise interface for the
individual implementations and, consequently, a generic ap-
proach to select specific versions based on properties [22].
The concrete goal is to design a mechanism which allows
for the selection of a mesh generation tool based on certain
properties during compile-time. For example, the mesh gen-
eration tools provide varying support for the dimensions of
the input geometry, e.g., two-/three-dimensional mesh gen-
eration tools.

Tool

Tool

Tool

Tool

Tool

Tool

Tool

support
meta-properties

A

B

Figure 2: The compile-time selection algorithm selects the
subset B ⊆ A of elements supporting the requested proper-
ties.

Another example is the utilization of different underlying
mesh generation algorithms, like the Advancing Front algo-
rithm or the Incremental Delaunay algorithm [21]. Although
we base our discussion on the field of mesh generation, the
approach can be directly applied to different fields, like com-
putational geometry, where, for example, a set of different
algorithms can be maintained based on the algorithm spe-
cific properties, e.g., high-performance or robust specializa-
tions. In general, the presented approach extends the func-
tionality of the filter_view algorithm which checks against
a single predicate [3][4]. Our approach, however, allows for
varying numbers of properties both for the provided and for
the requested set of properties. For example, an algorithm
provides two properties, being two-dimensional mesh gener-
ation and simplex mesh elements. If the requested properties
contain only the type of mesh elements, this algorithm is still
being chosen although only one of the available properties
is requested.

The basis for this approach is to attach a property datas-
tructure to each element of the algorithm set, which in our
example refers to the set of available meshing tools. Note
that this set refers to the superset A in Figure 2. The at-
tached datastructure should hold information about the in-
dividual properties of the algorithm, for example, the type
of the generated mesh elements. Generally, this datastruc-
ture should be flexible, extendible, and support compile-
time access. Here, flexibility and extendibility refers to the
fact that properties of various types and of arbitrary num-
ber should be supported. The associative, heterogenous map
container provided by the BFL copes with the introduced re-
quirements. Note that heterogeneity refers to the fact that
objects of arbitrary datatype can be stored. The follow-
ing code snippet depicts an exemplary implementation of a
mesh generator wrapper class with such an embedded, asso-
ciative property container. This property container is later
on accessed by our compile-time algorithm to investigate the
suitability for a given set of properties.

1 struct mesh_generator_one {
2 // ...
3 typedef result_of::make_map <
4 dimg , dimt , cell ,
5 three ,three ,simplex >::type properties_type; };

Listing 7: An associative property datastructure is embed-
ded in an available algorithm implementation.

mesh_generator_one refers to an exemplary implementation
of a mesh generator wrapper class. Such a wrapper can be
used to map a specific interface of a third-party mesh gen-
erator library to a unified interface. The nested proper-
ties_type can be identified as a concept requirement, as
its presence is expected later on by our compile-time facili-
ties [23]. The keys (Line 4) map to specific values (Line 5).
dimg and dimt refer to the dimension of the geometry and
topology space of the generated mesh elements, respectively.
The cell key and its value simplex refer to the specific
type of a simplicial mesh element type [24]. The presented
example indicates, that the mesh generator supports the
generation of a three-dimensional volume mesh based on
tetrahedral mesh elements. New property entries can be
conveniently added, if required. The used tags in Line 4,5
are empty structs, for example, struct dimg{};. This ap-
proach has a high degree of flexibility, due to the support of
properties of arbitrary type.

5

However, the approach of embedding the properties datas-
tructure in the algorithm implementation is intrusive, mean-
ing that existing code has to be altered. A more generic
approach is to provide a decoupled, tag-dispatched meta-
function mechanism which derives for a given tag (which
relates to a specific algorithm) the property datastructure.
A meta-function is a class or a class template which provides
a nested type typedef [3]. Therefore, a meta-function can
be interpreted as a compile-time variant of a common func-
tion, which computes for a set of input parameters, the type
template parameters, an output, which is accessible via the
nested type. The following code snippet depicts a possible
implementation for this approach.

1 namespace result_of {
2 template <typename T>
3 struct properties{typedef error type;};
4

5 template <>
6 struct properties <mesh_generator_one> {
7 typedef typename result_of::make_map <
8 dimg , dimt , cell ,
9 three ,three ,simplex ,

10 >::type type; };
11 }

Listing 8: A tag-dispatched meta-function mechanism pro-
vides non-intrusive generation of the properties container.

We embed the meta-function facility in the result_of names-
pace, to follow the coding style of, for example, the BFL
(Line 1). The default meta-function specialization evaluates
to an error indicating type, e.g., struct error{};(Lines 2,3).
An arbitrary number of specializations can be implemented
based on unique tags (Lines 5-10). This tag-dispatched
meta-function can then be used to generate the actual prop-
erty container for a specific mesh generation implementa-
tion, similar to the implementation depicted in Listing 7.

1 typedef result_of::properties <
2 mesh_generator_one >::type properties_type;

Listing 9: A non-intrusive, generic approach assigns a
property container to a specific class by utilizing the tag-
dispatching technique.

At this point, the elements of the tool set offer a container
which provides information about their properties. The next
step is to implement a mechanism which, for a given input
property container, traverses the elements of the algorithm
set and determines whether the individual elements support
the required properties. The result of this operation is a
container of feasible algorithms.

In the following, the core parts of our approach are pre-
sented. At first, the user-level code is shown and then an in-
depth discussion of the underlying components is provided.
The following code snippet utilizes the facility to compute
the set of tools which support a set of properties out of a set
of available tools.

1 typedef typename filter_fold::apply <
2 Properties , AvailableTools >::type ResultTools;

Listing 10: The compile-time facility is utilized to compute
the subset of tools which support the required properties.

The class filter_fold models the MPL concept of a meta-
function class. A meta-function class is supposed to provide
the nested meta-function apply.

This meta-function is utilized to compute the actual set of
the input set AvailableTools, which supports the set of
properties Properties. Note that the container Available-
Tools and Properties are modeled by a MPL vector and
a BFL map, respectively.

In the following, the internals of the meta-function class fil-
ter_fold are presented. Note that the implementation is
inspired by the do_the_bind example of the BFL.

1 struct filter_fold {
2 struct fold_op {
3 template <typename Sig> struct result;
4

5 template <class S, class ToolSet , class Property >
6 struct result < S(ToolSet &,Property &) > {
7 typedef typename mpl::filter_view <
8 ToolSet , check <Property >
9 >::type type; }; };

10

11 template <typename Properties , typename ToolSet >
12 struct apply : fusion ::result_of::fold <
13 Properties , ToolSet , fold_op >::type { }; };

Listing 11: The implementation of the meta-selection al-
gorithm is based on the filter_view and the fold meta-
functions.

The class filter_fold is based on two nested classes: First,
the test operation fold_op is implemented as a class which
offers a nested result meta-function (Lines 2-9). The im-
plementation models the result_of concept which is part
of the new C++11 standard [5][20]. This nested meta-
function utilizes the filter_view algorithm provided by the
MPL. This filter algorithm computes the subset of ToolSet,
the elements of which satisfy a specific property under test
(check<Property>; Lines 7,8). fold_op is executed once for
each Property of the property set Properties. Second, a
binary meta-function apply is provided (Lines 11-13). This
meta-function invokes the fold sequence traversal algorithm
provided by the BFL based on the set of properties (Seq),
the set of tools (State), and the test operation which checks
the feasibility of each tool (fold_op).

The following code snippet introduces the final internal part,
being the test class check<...> which enables the filter
_view algorithm to verify if a certain property is supported
by a specific tool. The implementation models the unary
meta-function class concept. For the sake of simplicity only
the meta-function implementation of the nested apply struc-
ture is discussed.

1 typedef typename result_of::value_of <
2 typename result_of::find_if <
3 typename result_of::properties <Tool >::type ,
4 is_same <mpl::_,PropertyPair >
5 >::type
6 >::type find_result_type;
7 typedef typename is_same <
8 PropertyPair , find_result_type >::type type;

Listing 12: A test meta-function class is provided which is
used by the filter_view meta-function. The implementa-
tion evaluates whether or not a property is supported by a
specific tool.

The algorithm works as follows: First, the find_if algo-
rithm is utilized to determine whether the tool under consid-
eration (Tool) provides the property under test (Property-
Pair; Lines 2-5).

6

The supported properties of the tool are retrieved by uti-
lizing the properties<>::type meta-function introduced in
Listing 9 (Line 3). The property PropertyPair is actually
a BFL pair, as the fold operation (Listing 11) operates
on the elements of the associative properties map, which
are pairs. Second, the actual type stored at the position
of the returned iterator of the find_if algorithm is deter-
mined by the value_of algorithm. Third, the Boost Type-
Traits Library (BTTL) [25] is utilized, more specifically, the
is_same<>::type meta-function is applied to test whether
the result of the find-operation is the same as the requested
property (Lines 7,8). A MPL boolean is returned indicating
the result of this evaluation.

3.2 Conclusion
The presented meta-selection facility requires around 30-50
lines of code with additional 3-5 lines of code for each at-
tached property container to the individual tool or algorithm
specializations. Due to the utilization of the MPL, the BFL,
and the BTTL the implementation effort is highly reduced.
The major advantage of the presented approach is the high
degree of flexibility and extendibility. The selection process
can be applied to arbitrary scenarios, especially due to the
discussed non-intrusive approach to relate properties to ex-
isting implementations. Furthermore, the utilization of the
associative BFL container supports not only arbitrary keys
and values for the properties, but also the number of prop-
erties can vary.

4. ALGORITHM GENERALIZATION
So far we discussed scheduling and filtering of a set of com-
ponents. For the sake of extendibility and versatility it is
important to generalize those components to maximize the
degree of utilization, hence, minimizing long-term develop-
ment efforts. This section investigates an approach for gen-
eralizing geometrical algorithms. One of the core aspects
of generic programming is the notion of abstraction [26].
Abstraction, also referred to as generalization, enables to
apply implementations in a variety of situations. A typical
example would be from the field of computational geometry,
where the algorithms may be implemented generalized in
regard to the dimension of the geometry space, e.g., the dis-
tance algorithm which computes the distance between two
point-vectors of arbitrary dimension [27]. We will in partic-
ular discuss a couple of geometrical algorithms and derive
an approach to generalize them. We first analyze the algo-
rithms, group them, and lift them, which ultimately reveals
the underlying generalized algorithm. A possible implemen-
tation approach is finally depicted, which directly utilizes
the discussed generalization approach.

4.1 Background
The basis for our generalization approach is based on inves-
tigating the algorithms not only with respect to geometry
but also in regard to topology. Informally, geometry deals
with shape, size, and position, whereas topology is about
continuity and connectivity [28]. Generally, a geometrical
algorithm implicitly contains not only geometrical informa-
tion, like, a geometrical space R

d, but also topological infor-
mation, like, the number of vertices of a polygon on which
the algorithm is evaluated on. Table 1 depicts the geomet-
rical and topological informations of different algorithms in
examplary settings.

Geometry Topology

Line Length, R3 3D 1D,S/C
Triangle Area, R2 2D 2D,S

Tetrahedron Volume, R3 3D 3D,S
Cube Volume, R3 3D 3D,C

Table 1: The geometrical and topological informations of
different algorithms are depicted. D denotes the dimension
of the respective space, S and C refer to simplex and cube
topology, respectively. Simplex and cube can be informally
interpreted as the topological base type of the geometrical
entity which the algorithm processes. Note that the algo-
rithms can also be embedded in different geometrical spaces.

The depicted extraction of information in Table 1 is the
basis for the algorithm generalization. An important step
towards generalization by extracting the geometrical entity
of an algorithm is to map geometrical entities to topological
ones by introducing the notion of a cell, and more specifically
a k-cell where k denotes the topology dimension (Table 2)
[24].

k-cell topological object geometrical object

0-cell vertex point
1-cell edge line
2-cell face triangle, quadrilateral, ...
3-cell cell tetrahedron, cuboid, ...

Table 2: The relations between an arbitrary k-cell (left),
topological objects (middle) and the geometrical counter-
parts (right). A unique mapping from a k-cell to a geomet-
rical entity can only be realized for dimensions of up to one.
For k > 1 the mapping to geometrical entities is not-unique.

There exists only a unique relation between the geometrical
entities and the topological counterparts for k = 0, 1. A
unique relation for k > 1 can only be achieved by additional
information called cell topology (Table 3). The cell topology
has already been introduced in Table 1 as the so-called base
type.

k-cell Cell Topology Geometrical Entity

0-cell simplex/cube point
1-cell simplex/cube line
2-cell simplex triangle
2-cell cube quadrilateral
3-cell simplex tetrahedron
3-cell cube cuboid

Table 3: A unique mapping from the topological cell ob-
jects to the geometrical entities can only be introduced by
combining the information of the dimension, k, with the cell
topology, e.g., simplex. For k = 0, 1 the cell topology is
obsolete, as it always maps to a point and line, respectively.

At this point we can conclude that to uniquely map a geo-
metrical entity, like a triangle, to a topological object, like
a cell, a topology dimension and a cell topology is required
(Figure 3).

With the introduced notion of a topology, and a k-cell es-
pecially, the geometrical algorithms can be investigated re-
garding generalization.

7

We base our investigations on the following algorithms:

• length of a line
• area of a triangle
• volume of a tetrahedron
• point in triangle test
• point in tetrahedron test

Cell
Topology

Cell
Dimension

Geometrical
Entity

Figure 3: Combining cell topology and cell dimension yields
a unique mapping to a geometrical entity.

The first step is to group the set of algorithms according to
their underlying behavior (Table 4).

algorithm generalized algorithm

length of a line Metric quantity
area of a triangle Metric quantity

volume of a tetrahedron Metric quantity
point in triangle test k-cell in q-cell

point in tetrahedron test k-cell in q-cell

Table 4: The relations between the algorithms and their re-
spective generalized versions are depicted. Top: The term
metric quantity is introduced to refer to the category of mea-
suring algorithms. Bottom: The k-cell notation is used to
generalize the inclusion tests. Note that the generalized ver-
sions lack any dimensional information as well as the type
of geometrical entity which is processed.

Finally, analyzing the grouping of the geometrical algorithms
in Table 4, the view in Figure 3 can be extended to ulti-
mately reveal an approach to generalize geometrical algo-
rithms (Figure 4).

Cell
Topology

Cell
Dimension

Geometrical
Entity

Generalized
Algorithm

Geometrical
Algorithm

Figure 4: A generalized algorithm can be formulated by
extracting the geometrical entity of a geometrical algorithm.

4.2 A Generic Algorithm Interface
The presented generalization approach can be directly im-
plemented by utilizing the template specialization technique.
This straightforward approach can be used to specialize for
various cell dimensions and topologies. The following code
snippets depict our approach based on the metric quantity
generalization. A default base class is provided which will be
specialized based on the cell dimension and the cell topology.

1 template < int Dimension , typename Topology >
2 struct metric_quantity { };

Listing 13: A default base class is shown which will be spe-
cialized based on the k-cell dimension and topology.

Partial template specialization for one-dimensional entities
is shown, where a 1-cell maps uniquely to a line, regardless
of the topology (Table 2).

1 template < typename Topology >
2 struct metric_quantity < 1, Topology > {
3 template <class > struct result;
4

5 template <class F, typename Cell >
6 struct result <F(Cell)> {
7 typedef double type;
8 };
9

10 template < typename Cell >
11 typename metric_quantity::result<
12 metric_quantity(Cell)>::type
13 operator ()(Cell& cell) const {
14 return boost::geometry ::distance (cell[0],cell [1]);
15 }};

Listing 14: The distance function is utilized for cell objects
of dimension one, regardless of the topology.

The result_of concept is modeled by nesting the meta-
function result in the functor implementation [20] (Lines 3-
8,11-12). This approach is important as it provides a Cell-
type dependent return type evaluation, which is vital as the
return type might change for different cell-types. Each spe-
cialization contains the actual algorithm, for example, the
BGL based distance() function (Lines 10-15) [27]. In the
presented example, we expect the cell object to provide
access to the individual BGL point vector objects by the
[]-operator overload (Lines 13,14).

Another specialization is the area of a triangle, which is
presented in the following.

1 template < >
2 struct metric_quantity < 2, tag:: simplex > {
3 template <class > struct result;
4

5 template <class F, typename Cell >
6 struct result <F(Cell)> {
7 typedef double type;
8 };
9

10 template < typename Cell >
11 typename result < Cell >::type
12 operator ()(Cell& cell) const {
13 return boost::geometry ::area(cell);
14 }};

Listing 15: The area of a triangle is computed for a 2-cell
with simplex topology.

A 2-cell with simplex topology uniquely maps to a trian-
gle. The functor utilizes the area algorithm of the BGL
(Line 13).

8

For the sake of simplicity, the cell object is expected to model
the concept of a BGL polygon, hence, the area algorithm
can be directly applied to the cell object. However, a more
efficient approach could be to utilize a dedicated triangle
area algorithm at this point, as the BGL’s area function
aims at processing, for example, run-time based polygon ob-
jects.

Figure 5 depicts the mapping of the presented generalization
approach shown in Figure 4 to the discussed tag-dispatched
implementation approach.

Generalized Algorithm

template<int Dimension,typename Topology>
struct metric_quantity{};

Geometrical Algorithm

template<>
struct metric_quantity<2,simplex>{..};

Cell Dimension Cell Topology
Figure 5: The various parts of the discussed generalization
approach are identified in the tag-dispatched implementa-
tion. Top: The base class metric_quantity represents the
generalized algorithm, which by itself contains no program
logic. Bottom: Only with the k-cell topology and dimen-
sion the generalized algorithm concretely maps to a geomet-
rical one.

It is important to note that the discussion so far has only
dealt with compile-time information. This, however, is in-
sufficient for supporting typical run-time entities, like, poly-
gons. In such a case, the k-cell topology and dimension is
obviously only available during run-time, hence, introduces
the need for a run-time based dispatch. The concept of the
dispatch follows the introduced compile-time approach, how-
ever, for the sake of simplicity we focus on the compile-time
case.

4.3 Utilization by a Generic Datastructure
Our implementation follows one of the key aspects of the
generic paradigm, being the separation of algorithms from
datastructures. The presented tag-dispatched implementa-
tion represents the algorithm. This algorithm can be uti-
lized in conjunction with, for example, a mesh datastructure
which supports compile-time handling. Compile-time han-
dling refers to the ability to access datastructure relevant
information during compile-time, for example, the number
of incident cell vertices. In the following we discuss an ap-
plication scenario where our presented generic algorithm is
used in conjunction with a generic compile-time mesh datas-
tructure provided by the ViennaGrid library [29].

First, a domain object is created which holds the actual mesh
information, like the point-vectors and the mesh elements.

1 typedef config :: triangular_2d Config;
2 typedef result_of::domain<Config >::type Domain;
3 Domain domain;
4 domain.push_back(Point (0 ,0));
5 ..
6 domain.push_back(Cell(...));
7 ..

Listing 16: A ViennaGrid domain is created.

The domain is configured during compile-time (Line 1,2).
Various datastructure configurations are supported, like a
three-dimensional cuboid mesh. The domain is instantiated
(Line 3) and loaded with geometry and topology information
(Lines 4-7).

At this point the datastructure is populated and our previ-
ously introduced generic algorithm interface is utilized for
computations. For example, a typical task might be to com-
pute the area of each mesh element of a two-dimensional
mesh. This can be realized by traversing the set of mesh el-
ements and utilizing the generic metric quantity algorithm
for each of them, like depicted in the following.

1 typedef boost ::result_of <
2 metric_quantity_gen(Cell) >::type quan_type;
3 ..
4 CellRange cells = ncells(domain);
5 for(CellIterator cit = cells.begin ();
6 cit != cells.end();++ cit) {
7 quan_type quan = compute_mq(*cit);
8 }

Listing 17: The metric quantities of all cells of a domain are
computed.

We introduced an additional functor (metric_quantity_gen)
on top of the tag-dispatched implementation introduced in
Section 4.2. This functor extracts the required tags from
the cell object type Cell and forwards them to the respec-
tive specializations. metric_quantity_gen models the re-
sult_of concept and as such provides return type compu-
tation (Lines 1,2). The set of mesh elements (cells) is ex-
tracted from the domain (Line 4) and traversed by an it-
erator cit (Line 5-8). The previously instantiated generic
metric-quantity functor compute_mq is called for each mesh
element (Line 7).

It is important to note that the presented implementation of
computing the metric quantities is decoupled from the do-
main type. If, for example, the domain configuration in List-
ing 16 is changed from triangular_2d to tetrahedral_3d
the volume of the tetrahedral mesh elements are computed.
The algorithm adapts automatically during compile-time by
analyzing the provided cell type. This generic approach al-
lows to build up intricate implementations for various appli-
cation scenarios, without actually changing the code base.
Additionally, the application of the result_of concept al-
lows for algorithm-specific return types. This might be of
significant interest in the case of, for example, numerical
robustness, where different high-precision datatypes can be
used to achieve highly accurate results. Those facts com-
bined outline the generic implementation style of our ap-
proach.

4.4 Conclusion
Our approach to generalize geometrical algorithms based on
the notion of topology, and of a k-cell especially, can be di-
rectly utilized for a generic algorithm interface. We have
shown that our generic tag-dispatched algorithm hierarchy
maps directly to our generalization approach. Additionally,
our implementation works best in conjunction with datas-
tructures which support compile-time handling, as the tag-
dispatching facilities can be attached with the datastruc-
tures meta-system, ultimately nullifying run-time overhead
for algorithm dispatches.

9

5. SUMMARY
We have introduced three different implementation tasks
from the field of scientific computing in detail. By apply-
ing modern programming techniques as well as the Boost
libraries we achieve highly versatile, maintainable, and ex-
tendible code primarily due to the application of the generic
programming paradigm. Therefore, our applications show
that the additional time spent in learning advanced C++
skills pays off in the long run. Furthermore, our approaches
can be used for further investigations, for example, in the
context of a generic computational geometry library.

Acknowledgments
This work has been supported by the European Research
Council through the grant #247056 MOSILSPIN. Karl Rupp
gratefully acknowledges support by the Graduate School
PDETech at the TU Wien.

6. REFERENCES
[1] The Boost C++ Libraries. http://www.boost.org/.
[2] The Boost Spirit Library.

http://www.boost.org/libs/spirit/.
[3] The Boost Metaprogramming Library.

http://www.boost.org/libs/mpl/.
[4] The Boost Fusion Library.

http://www.boost.org/libs/fusion/.
[5] Matt Austern. Draft Technical Report on C++

Library Extensions. ISO/IEC JTC1/SC22/WG21,
N1836, 2005.

[6] Karsten Ahnert et al. Odeint - Solving Ordinary
Differential Equations in C++. AIP Conference
Proceedings, 1389(1):1586–1589, 2011.

[7] Peter Gottschling et al. Integrating Object-Oriented
and Generic Programming Paradigms in Real-World
Software Environments. In POOSC Workshop at
ECOOP, 2008.

[8] The Boost Graph Library.
http://www.boost.org/libs/graph/.

[9] The Boost Phoenix Library.
http://www.boost.org/libs/phoenix/.

[10] Greg Butler et al. Documenting Frameworks to Assist
Application Developers. In Object-Oriented
Application. John Wiley and Sons, 1997.

[11] Garry Froehlich et al. Designing Object-Oriented
Frameworks. In Handbook of Object Technology, pages
1–30. CRC Press, 1998.

[12] Timothy R. Culp. Industrial Strength Pluggable
Factories. C++ Report, 11(9), 1999.

[13] Dia Kharrat et al. Self-Registering Plug-ins: An
Architecture for Extensible Software. In CCECE,
pages 1324–1327, 2005.

[14] Tiago Quintino. A Component Environment for
High-Performance Scientific Computing. PhD thesis,
Katholieke Universiteit Leuven, 2008.

[15] Kunal Agrawal et al. Executing Task Graphs Using
Work-Stealing. In IPDPS, pages 1–12, 2010.

[16] Yu-Kwong Kwok et al. Static Scheduling Algorithms
for Allocating Directed Task Graphs to
Multiprocessors. ACM Computing Surveys, 31(4),
1999.

[17] Thomas H. Cormen et al. Introduction to Algorithms,
Third Edition. The MIT Press, 2009. ISBN
0262033844.

[18] Tracy D. Braun et al. A Comparison of Eleven Static
Heuristics for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed Computing Systems.
Journal of Parallel and Distributed Computing, 61(6),
2001.

[19] John Hughes. Why Functional Programming Matters.
The Computer Journal, 32(2), 1989.

[20] The Boost Utility Library.
http://www.boost.org/libs/utility/.

[21] Jonathan R. Shewchuk. Unstructured Mesh
Generation. In Combinatorial Scientific Computing,
pages 259–297. CRC Press, 2012. ISBN 1439827354.

[22] Josef Weinbub et al. High-Quality Mesh Generation
Based on Orthogonal Software Modules. In SISPAD,
pages 139–142, 2011.

[23] Gabriel Dos Reis et al. Specifying C++ Concepts.
SIGPLAN Notices, 41(1), 2006.

[24] Guntram Berti. Generic Software Components for
Scientific Computing. Dissertation, Technische
Universität Cottbus, 2000.

[25] The Boost Type-Traits library.
http://www.boost.org/libs/type traits/.

[26] Gabriel Dos Reis et al. What is Generic
Programming? In LCSD, 2005.

[27] The Boost Geometry Library.
http://www.boost.org/libs/geometry/.

[28] Afra J. Zomorodian. Topology for Computing.
Cambridge University Press, 2005. ISBN 0521836662.

[29] ViennaGrid. http://viennagrid.sourceforge.net/.

10

