
Jeff Garland

C++Now 2012

C++ GEMS
CHRONO & RATIO

ALTERNATIVE TITLES

Why C++11 is the awesomest language to write
timed threading code

How boost.date_time inspired C++11 to handle
time better

PART 1: CHRONO

MOTIVATION – A HORROR STORY

Once upon a time timing was needed for boost
thread…and there was xtime

And the sacred docs said:
“An object of type xtime defines a time…”

“This is a temporary solution that will be

Temporary almost became 8

replaced by a more robust time library
once available in Boost.”

MOTIVATION – A HORROR STORY

What is xtime…
xtime {

sec;
};

xtime_get(xtime*,);

struct

int int

platform-specific-type

MOTIVATION – A HORROR STORY

It’s not just xtime – it’s C & Posix

struct timespec ts;

/* Delay for a bit */
ts.tv_sec = 2;
ts.tv_nsec = 1030;
nanosleep (&ts, NULL);

How long is this sleep exactly?

Isn’t every bit precious?

Need to do math on these? Good luck it’s ugly…

Comparison is inefficient

Not awesome – we can do better!

“TIME” FOR A LITTLE THEORY

Time Point – a location in the time continuum
Handy for saying ‘at exactly this time’
Epoch – the anchor point for the counted representation

Durations – a length of time
Handy for saying ‘10 seconds from now’
A count (with a resolution)
10 seconds, 20 milliseconds, etc

Clocks
Tell us the current time point
At a certain resolution…

Duration 2

THREADING INTERFACES WITH TIMES

Timed Locking:

bool try_lock_for(const duration& relative_time);
bool try_lock_until(const time_point& absolute_time);

Condition Variable Methods:
bool wait_until(unique_lock<mutex>& lock,

const time_point& absolute_time,
Predicate p)

cv_status wait_for(unique_lock<mutex>& lock,
const duration& relative_time)

MORE THREADING INTERFACES WITH TIMES

Sleeping:

void sleep_for (const duration& relative_time);
void sleep_until(const time_point& absolute_time);

std::future, std::shared_future
bool wait_for(const duration& relative_time) const
bool wait_until(const time_point& absolute_time) const

Last 2 slides – many lies….
In the real world things are a bit more complex
More later…

“TIME” FOR SOME REST – CERTIFIED C++11

Sleeping:

using namspace std::chrono;
std::this_thread::sleep_for(milliseconds(100));
std::this_thread::sleep_for(seconds(2));

//when c++ crushes java…how long is that exactly?

java.lang.Thread.currentThread().sleep(10000);

C++11 is the awesomest

DURATIONS ARE COOL

using namespace std::chrono;

microseconds d1(1000);
seconds d2(1);

std::cout << d1.count() << std::endl;

d1 += seconds(30);
d1 += milliseconds(1) – microseconds(20);
d2++; d1--;
d2*=10;

if (d1 > d2) {…} //the usual comparisons

Convert seconds to microseconds

DURATIONS INTERFACE

An arithmetic value type (more later)
Expected Comparison operators

Observers
constexpr rep_type count() const

Traits

static constexpr duration zero();

static constexpr duration min();

static constexpr duration max();

DURATIONS – CONSTRUCT/COPY/DESTROY
constexpr duration() = default; //duration 0
~duration() = default;

duration(const duration&) = default;

duration& operator=(const duration&) = default;

template <class Rep2, class Period2>

constexpr duration(const duration<Rep2, Period2>& d);

DURATIONS INTERFACE - ARITHMETIC
duration& operator++();

duration operator++(int);

duration& operator--();

duration operator--(int);

duration& operator+=(const duration& d);

duration& operator-=(const duration& d);

duration& operator*=(const rep& rhs);

duration& operator/=(const rep& rhs);

duration& operator%=(const rep& rhs);

duration& operator%=(const duration& rhs);

LET’S SLEEP TILL AN ABSOLUTE TIME

system_clock::time_point tp = system_clock::now();

tp += milliseconds(20);

std::this_thread::sleep_until(tp);

CLOCK INTERFACE

Clock is a bundle consisting of a duration, a time_point, and
a function now() to get the current time

Construction
None
static time_point now()

Declared Types
time_point
duration

TIME POINTS AND DURATIONS PLAY NICE

system_clock::time_point tp;

system_clock::time_point tp2 = tp + seconds(2) + milliseconds(20);

milliseconds ms = tp2 - tp;

nanoseconds ms = tp2 - tp;

duration + time point ? time point duration + duration ? duration

time point - time point ? duration

Compiler error – not enough resolution

C++11 is the awesomest

TIME POINT INTERFACE

Construction
default //constructs to clock epoch
call now() on a clock

Conversion
time_t to_time_t()
duration time_since_epoch()

Arithmetic
time_point& operator+= (const duration& d);
time_point& operator-= (const duration& d);

PROBLEMS AND COMPLICATIONS

Clocks are not all created equal…
Resolution of clock depends on machine
Machines are changing
Typically millisecond resolution

How can the C++ standard specify reasonably?

Answer - templates of course!

What we want:
Code that can be portable as possible
Code that can take full advantage of a platform
Code that doesn’t have to change as clocks improve
Code that ‘just works’

TRY LOCK INTERFACE – THE REAL DEAL

template<typename Rep,typename Period>

bool

try_lock_for(std::chrono::duration<Rep,Period> const& relative_time);

template<typename Clock,typename Duration>

bool

try_lock_until(std::chrono::time_point<Clock,Duration> const& absolute_time);

The generic interfaces allow for custom clocks to be added – same interface

THREE STANDARD CLOCKS

high_resolution_clock
Clock with the shortest tick period.
may be a synonym for system_clock or steady_clock.

Beware – platforms will be different – your mileage may vary

system_clock
Represent wall clock time from the system-wide realtime clock
typically this will be implemented via gettimeofday()
clock can be adjusted – possibly backward
user sets time, NTP adjust

steady_clock

values of time_point never decrease as physical time advances

values of time_point advance at a steady rate relative to real time

clock cannot be adjusted

PART 2: UNDER THE HOOD -- RATIO

WHERE THE MAGIC HAPPENS

//chrono header
typedef duration<int64_t, nano> nanoseconds;
typedef duration<int64_t, micro> microseconds;
typedef duration<int64_t, milli> milliseconds;
typedef duration<int64_t> seconds;
typedef duration<int, ratio< 60>> minutes;
typedef duration<int, ratio<3600>> hours;

What is ‘nano’ and what is ratio<3600> doing?

RATIO THE BASICS

Compile time rational numbers
template ratio<N, M>

Math functions that go with
add, subtract, multiply, divide

The magic behind duration to duration conversion

RATIO EXAMPLE
Example – duration unit conversions

1 second is fundamental unit of measure
There are 1000 milliseconds in a second
Milliseconds to seconds -- divide by 1000

//abbreviated list from g++ ratio header
typedef ratio<1, 1000000000> nano;
typedef ratio<1, 1000000> micro;
typedef ratio<1, 1000> milli;
typedef ratio<1, 100> centi;
typedef ratio<1, 10> deci;
typedef ratio< 10, 1> deca;
typedef ratio< 100, 1> hecto;
typedef ratio< 1000, 1> kilo;

…

CONVERSIONS USING RATIO

system_clock::time_point tp;

system_clock::time_point tp2 = tp + seconds(2) + milliseconds(20);

milliseconds ms = tp2 - tp;

nanoseconds ms = tp2 - tp;

Duration added to time point Duration added to Duration

Duration subtracted from time point

Compiler error – not enough resolution

CONVERSION FROM SECONDS TO HOURS

1 second is fundamental unit of measure
There are 3600 seconds in a hour
Multiply seconds by 3600

ratio<3600, 1> or shorter version ratio<3600>

CUSTOM DURATIONS – EASY AS PIE

What if I need to deal in other time lengths?
Say 1/2 of a second is important unit

typedef std::ratio<1,2> half;
typedef std::chrono::duration<int64_t, half> half_seconds;

half_seconds is now useable in all thread/sleep APIS
half_seconds ‘just works’ with all the other durations

CUSTOM DURATIONS IN ACTION
half_seconds hs = seconds(10);
std::cout << hs.count() << std::endl; //20

seconds s = half_seconds(3);

seconds s = duration_cast<seconds>(half_seconds(3));
std::cout << s.count() << std::endl; //1

error: conversion from ‘half_seconds’ to non-scalar
type ‘std::chrono::seconds’ requested

PART 3: FINAL THOUGHTS

NOT ALL SWEETNESS AND LIGHT

#include <chrono>
#include <iostream>
…

using namespace std::chrono;

system_clock::time_point tp = system_clock::now();

std::cout << tp << std::endl; Compiler error – no operator

BOOST TO THE RESCUE

#include <boost/date_time.hpp>

using namespace std::chrono;
using namespace boost::posix_time;

system_clock::time_point tp = system_clock::now();

ptime tp2(from_time_t(system_clock::to_time_t(tp)));

std::cout << tp2 << std::endl; // YYYY-MM-DD HH:MM:SS

CHRONO VS BOOST DATE.TIME – WHAT NEXT?

Boost date.time needs to be re-written for c++11

Should adopt the duration types from c++11
Should adopt the time_point abstractions (almost)
Should adopt the clocks from chrono

From there – it’s more complicated
ptime stands alone from clocks

Can’t promise when this will happen….

No more excuses – only elegant time code in C++11!

Study the standard library
powerful tools under the hood

FINAL THOUGHTS

g++4.6 – all examples compiled there – looks good

Thanks to Howard

C++11 is the awesomest!

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34

