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ALTERNATIVE TITLES

Why C++11 is the awesomest language to write 
timed threading code

How boost.date_time inspired C++11 to handle 
time better



PART 1: CHRONO



MOTIVATION – A HORROR STORY

Once upon a time timing was needed for boost 
thread…and there was xtime

And the sacred docs said:
“An object of type xtime defines a time…”

“This is a temporary solution that will be

Temporary almost became 8

replaced by a more robust time library
once available in Boost.”



MOTIVATION – A HORROR STORY

What is xtime…
xtime { 

sec; 
};

xtime_get(xtime*, );

struct

int int

platform-specific-type



MOTIVATION – A HORROR STORY

It’s not just xtime – it’s C & Posix

struct timespec ts;

/* Delay for a bit */ 
ts.tv_sec = 2; 
ts.tv_nsec = 1030; 
nanosleep (&ts, NULL);

How long is this sleep exactly?

Isn’t every bit precious? 

Need to do math on these? Good luck it’s ugly…

Comparison is inefficient 

Not awesome – we can do better!



“TIME” FOR A LITTLE THEORY

Time Point – a location in the time continuum
Handy for saying ‘at exactly this time’
Epoch – the anchor point for the counted representation

Durations – a length of time
Handy for saying ‘10 seconds from now’
A count (with a resolution)
10 seconds, 20 milliseconds, etc

Clocks 
Tell us the current time point
At a certain resolution…

Duration 2



THREADING INTERFACES WITH TIMES

Timed Locking:

bool try_lock_for(   const duration&     relative_time); 
bool try_lock_until( const time_point& absolute_time);

Condition Variable Methods:
bool wait_until(unique_lock<mutex>& lock,

const time_point& absolute_time,
Predicate p)

cv_status wait_for(unique_lock<mutex>& lock,
const duration& relative_time)



MORE THREADING INTERFACES WITH TIMES

Sleeping:

void sleep_for (  const duration&     relative_time);
void sleep_until( const time_point& absolute_time);

std::future, std::shared_future
bool wait_for(const duration& relative_time) const
bool wait_until(const time_point& absolute_time) const

Last 2 slides – many lies….
In the real world things are a bit more complex 
More later…



“TIME” FOR SOME REST – CERTIFIED C++11

Sleeping:

using namspace std::chrono;
std::this_thread::sleep_for( milliseconds(100) );
std::this_thread::sleep_for( seconds(2) );

//when c++ crushes java…how long is that exactly?

java.lang.Thread.currentThread().sleep(10000);

C++11 is the awesomest



DURATIONS ARE COOL

using namespace std::chrono;

microseconds d1(1000);
seconds         d2(1);

std::cout << d1.count() << std::endl;

d1 += seconds(30);  
d1 += milliseconds(1) – microseconds(20);
d2++; d1--; 
d2*=10;

if (d1 > d2) {…}   //the usual comparisons

Convert seconds to microseconds



DURATIONS INTERFACE

An arithmetic value type (more later)
Expected Comparison operators

Observers
constexpr rep_type count() const

Traits

static constexpr duration zero();

static constexpr duration min();

static constexpr duration max();



DURATIONS – CONSTRUCT/COPY/DESTROY
constexpr duration() = default;                 //duration 0
~duration() = default;

duration(const duration&) = default;

duration& operator=(const duration&) = default;

template <class Rep2, class Period2>

constexpr duration(const duration<Rep2, Period2>& d);



DURATIONS INTERFACE - ARITHMETIC
duration& operator++();

duration operator++(int);

duration& operator--();

duration operator--(int);

duration& operator+=(const duration& d);

duration& operator-=(const duration& d);

duration& operator*=(const rep& rhs);

duration& operator/=(const rep& rhs);

duration& operator%=(const rep& rhs);

duration& operator%=(const duration& rhs);



LET’S SLEEP TILL AN ABSOLUTE TIME

system_clock::time_point tp = system_clock::now();

tp += milliseconds(20); 

std::this_thread::sleep_until( tp );



CLOCK INTERFACE

Clock is a bundle consisting of a duration, a time_point, and 
a function now() to get the current time

Construction
None
static time_point now()

Declared Types
time_point
duration 



TIME POINTS AND DURATIONS PLAY NICE

system_clock::time_point tp;

system_clock::time_point tp2 = tp + seconds(2) + milliseconds(20);

milliseconds ms = tp2 - tp;

nanoseconds ms = tp2 - tp;

duration + time point ?  time point duration + duration ?  duration

time point - time point ?  duration

Compiler error – not enough resolution

C++11 is the awesomest



TIME POINT INTERFACE

Construction
default     //constructs to clock epoch
call now() on a clock

Conversion
time_t to_time_t()
duration time_since_epoch()

Arithmetic
time_point& operator+= (const duration& d);
time_point& operator-= (const duration& d);



PROBLEMS AND COMPLICATIONS

Clocks are not all created equal…
Resolution of clock depends on machine
Machines are changing 
Typically millisecond resolution

How can the C++ standard specify reasonably?

Answer - templates of course!

What we want:
Code that can be portable as possible
Code that can take full advantage of a platform
Code that doesn’t have to change as clocks improve
Code that ‘just works’



TRY LOCK INTERFACE – THE REAL DEAL

template<typename Rep,typename Period> 

bool

try_lock_for( std::chrono::duration<Rep,Period> const& relative_time); 

template<typename Clock,typename Duration> 

bool

try_lock_until( std::chrono::time_point<Clock,Duration> const& absolute_time);

The generic interfaces allow for custom clocks to be added – same interface



THREE STANDARD CLOCKS

high_resolution_clock
Clock with the shortest tick period. 
may be a synonym for system_clock or steady_clock.

Beware – platforms will be different – your mileage may vary

system_clock
Represent wall clock time from the system-wide realtime clock 
typically this will be implemented via gettimeofday()
clock can be adjusted – possibly backward 
user sets time, NTP adjust

steady_clock

values of time_point never decrease as physical time advances 

values of time_point advance at a steady rate relative to real time

clock cannot be adjusted



PART 2: UNDER THE HOOD -- RATIO



WHERE THE MAGIC HAPPENS

//chrono header
typedef duration<int64_t, nano> nanoseconds;
typedef duration<int64_t, micro> microseconds;
typedef duration<int64_t, milli> milliseconds;
typedef duration<int64_t> seconds;
typedef duration<int, ratio< 60>> minutes;
typedef duration<int, ratio<3600>> hours;

What is ‘nano’ and what is ratio<3600> doing?



RATIO  THE BASICS

Compile time rational numbers
template ratio<N, M>

Math functions that go with
add, subtract, multiply, divide

The magic behind duration to duration conversion 



RATIO EXAMPLE
Example – duration unit conversions

1 second is fundamental unit of measure
There are 1000 milliseconds in a second 
Milliseconds to seconds -- divide by 1000

//abbreviated list from g++ ratio header
typedef ratio<1,                1000000000> nano;
typedef ratio<1,                   1000000> micro;
typedef ratio<1,                      1000> milli;
typedef ratio<1,                       100> centi;
typedef ratio<1,                        10> deci;
typedef ratio<                       10, 1> deca;
typedef ratio<                      100, 1> hecto;
typedef ratio<                     1000, 1> kilo;

…



CONVERSIONS USING RATIO

system_clock::time_point tp;

system_clock::time_point tp2 = tp + seconds(2) + milliseconds(20);

milliseconds ms = tp2 - tp;

nanoseconds ms = tp2 - tp;

Duration added to time point Duration added to Duration

Duration subtracted from time point

Compiler error – not enough resolution



CONVERSION FROM SECONDS TO HOURS

1 second is fundamental unit of measure
There are 3600 seconds in a hour
Multiply seconds by 3600

ratio<3600, 1> or shorter version ratio<3600>



CUSTOM DURATIONS – EASY AS PIE

What if I need to deal in other time lengths?
Say 1/2 of a second is important unit

typedef std::ratio<1,2> half;
typedef std::chrono::duration<int64_t, half> half_seconds;

half_seconds is now useable in all thread/sleep APIS
half_seconds ‘just works’ with all the other durations



CUSTOM DURATIONS IN ACTION
half_seconds hs = seconds(10);
std::cout << hs.count() << std::endl; //20

seconds s = half_seconds(3);

seconds s = duration_cast<seconds>(half_seconds(3));
std::cout << s.count() << std::endl; //1

error: conversion from ‘half_seconds’ to non-scalar 
type ‘std::chrono::seconds’ requested



PART 3: FINAL THOUGHTS



NOT ALL SWEETNESS AND LIGHT

#include <chrono>
#include <iostream>
…

using namespace std::chrono;

system_clock::time_point tp = system_clock::now();

std::cout << tp << std::endl; Compiler error – no operator



BOOST TO THE RESCUE

#include <boost/date_time.hpp>

using namespace std::chrono;
using namespace boost::posix_time;

system_clock::time_point tp = system_clock::now();

ptime tp2(from_time_t(system_clock::to_time_t(tp)));

std::cout << tp2 << std::endl; // YYYY-MM-DD HH:MM:SS



CHRONO VS BOOST DATE.TIME – WHAT NEXT?

Boost date.time needs to be re-written for c++11

Should adopt the duration types from c++11
Should adopt the time_point abstractions (almost)
Should adopt the clocks from chrono

From there – it’s more complicated
ptime stands alone from clocks 

Can’t promise when this will happen….



No more excuses – only elegant time code in C++11!

Study the standard library
powerful tools under the hood

FINAL THOUGHTS

g++4.6 – all examples compiled there – looks good

Thanks to Howard

C++11 is the awesomest!
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