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Amdahl’s Law (Strong Scaling) 
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Gustafson’s Law (Weak Scaling) 

𝑆 = 𝑁𝑃 − 𝑃 + 1 
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N: Number of processors 
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The 4 Horsemen of the Apocalypse: SLOW 

• Starvation 
– Insufficient concurrent work to 

maintain high utilization of resources. 

• Latencies 
– Time-distance delay of remote 

resource access and services. 

• Overheads 
– Work for management of parallel 

actions and resources on critical path 
which are not necessary in sequential 
variant. 

• Waiting for Contention Resolution 
– Delays due to lack of availability of 

oversubscribed shared resource. 
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Main Runtime System Tasks 

• Manage parallel execution for the application  Starvation 

– Exposing parallelism, runtime adaptive management of parallelism and 
resources. 

– Synchronizing parallel tasks. 

– Thread (task) scheduling, load balancing, object migration. 

• Mitigate latencies for the application Latency 

– Latency hiding through overlap of computation and communication. 

– Latency avoidance through locality management. 

• Reduce overhead for the application  Overhead 

– Synchronization, scheduling, load balancing, communication, context 
switching, memory management, address translation. 

• Resolve contention for the application  Contention 

– Adaptive routing, resource scheduling, load balancing. 

– Localized request buffering for logical resources. 
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What’s HPX? 

• Active global address space (AGAS) instead of PGAS. 

• Message driven instead of message passing. 

• Lightweight control objects instead of global barriers. 

• Latency hiding instead of latency avoidance. 

• Adaptive locality control instead of static data 
distribution. 

• Moving work to data instead of moving data to work. 

• Fine grained parallelism of lightweight threads instead 
of Communicating Sequential Processes (CSP/MPI). 

• Open source – Boost Software License. 
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HPX Runtime System Design 

• Current version of HPX provides the following 
infrastructure on conventional systems as defined 
by the ParalleX execution model. 
– Active Global Address Space (AGAS). 

– HPX Threads and Thread Management. 

– Parcel Transport and Parcel Management. 

– Local Control Objects (LCOs). 

– HPX Processes (distributed objects). 
• Namespace and policies management, locality control. 

– Monitoring subsystem. 
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Active Global Address Space 

• Global Address Space throughout the system. 
– Removes dependency on static data distribution. 
– Enables dynamic load balancing of application and system data. 

• AGAS assigns global names (identifiers, unstructured 128 bit integers) to all 
entities managed by HPX. 

• Unlike PGAS provides a mechanism to resolve global identifiers into corresponding 
local virtual addresses (LVA). 
– LVAs comprise – Locality ID, type of entity being referenced and its local memory address. 
– Moving an entity to a different locality updates this mapping. 
– Current implementation is based on centralized database storing the mappings which are 

accessible over the local area network.  
– Local caching policies have been implemented to prevent bottlenecks and minimize the 

number of required round-trips.  

• Current implementation allows autonomous creation of globally unique ids in the 
locality where the entity is initially located and supports memory pooling of similar 
objects to minimize overhead. 

• Implemented garbage collection scheme of HPX objects. 
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Thread Management 

• Thread manager is modular and implements a work-
queue based task management 

• Threads are cooperatively scheduled at user level 
without requiring a kernel transition 

• Specially designed synchronization primitives such as 
semaphores, mutexes etc. allow synchronization of 
HPX- threads in the same way as conventional threads 

• Thread management currently supports several key 
modes 
– Global Thread Queue 
– Local Queue (work stealing) 
– Local Priority Queue (work stealing) 
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Parcel Management 

• Active messages (parcels) 

• Destination address, function to execute, parameters, continuation  

• Any inter-locality messaging is based on Parcels 

• In HPX parcels are represented as polymorphic objects 

• An HPX entity on creating a parcel object hands it to the parcel 
handler. 

• The parcel handler serializes the parcel where all dependent data is 
bundled along with the parcel 

• At the receiving locality the 
parcel is de-serialized and 
causes a HPX thread to be 
created based on its content 

Locality 2Locality 1

Parcel Handler

parcel 

object

Action Manager

HPX Threads

put()

Serialized Parcel De-serialized Parcel
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Constraint-based Synchronization 

• Compute dependencies at 
task instantiation time. 

• No global barriers, uses 
constraint based 
synchronization. 

• Computation flows at its 
own pace. 

• Message driven. 
• Symmetry between local 

and remote task 
creation/execution. 

• Possibility to control grain 
size. 
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LCOs (Local Control Objects) 

• LCOs provide a means of controlling parallelization and 
synchronization of HPX-threads. 

• Enable event-driven thread creation and can support in-
place data structure protection and on-the-fly scheduling. 

• Preferably embedded in the data structures they protect. 
• Abstraction of a multitude of different functionalities for. 

– Event driven PX-thread creation. 
– Protection of data structures from race conditions. 
– Automatic on-the-fly scheduling of work. 

• LCO may create (or reactivate) a HPX-thread as a result of 
“being triggered”. 
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Hello HPX World 

• Simplest HPX program: 
 

#include <hpx/hpx.hpp> 

#include <hpx/iostream.hpp> 

 

int hpx_main() 

{ 

    hpx::cout << "Hello HPX World!\n"; 

    return hpx::finalize(); 

} 

 

int main(int argc, char* argv[]) 

{ 

    return hpx::init(argc, argv); 

} 
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Hello HPX World 

• HPX program with remote actions: 
 

void say_hello() 

{ 

    hpx::cout << "Hello HPX World from locality: " <<  

              << hpx::get_locality_id() << "!\n"; 

} 

 

HPX_REGISTER_PLAIN_ACTION(say_hello);   // Defines say_hello_action. 

 

int hpx_main() 

{ 

    say_hello_action sayit; 

    for (auto loc: hpx::find_all_localities())  

        hpx::apply(sayit, loc);  

    return hpx::finalize(); 

} 
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Hello HPX World 

• HPX program with synchronized parallel 
remote actions: 

 

int hpx_main() 

{ 

 std::vector<hpx::lcos::future<void> > ops; 

 say_hello_action sayit; 

 

 for (auto loc: hpx::find_all_localities())  

     ops.push_back(hpx::async(sayit, loc)); 

 

 hpx::wait_all(ops); 

 return hpx::finalize(); 

} 
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HPX – The API 

• Fully asynchronous 
– All possibly remote operations are asynchronous by 

default. 
• Fire and forget semantics (result is not available). 

• Pure asynchronous semantics (result is available via 
hpx::future). 

– Composition of asynchronous operations. 
• hpx::wait_all, hpx::wait_any, hpx::wait_n 

• hpx::future::when(f) 

– Can be used synchronously, but doesn’t block. 
• HPX-Thread is suspended while waiting for result. 
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HPX – The API 

• As close as possible to C++11 standard library, 
where appropriate, for instance 
– std::thread    hpx::thread 

– std::mutex  hpx::mutex 

– std::future    hpx::future 

– std::async  hpx::async 

– std::bind  hpx::bind 

– std::function  hpx::function 

– std::cout  hpx::cout 
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HPX – The API 

• Fully move enabled (using Boost.Move) 
– hpx::bind, hpx::function, hpx::tuple 

• Fully type safe 
– Extends the notion of a callabl’ to remote case (actions). 

– Everything you can do with functions is possible with 
actions as well. 

• Usable in remote contexts. 
– Can be sent over the wire (hpx::bind, hpx::function). 

– Can be used with actions (hpx::async, hpx::bind, 
hpx::function). 
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Fibonacci Number Sequence 

• The pathologic corner case: 
 

int fibonacci(int n); 
 
 
 
 
int fibonacci(int n) 
{ 
    if (n < 2) return n 
     
    hpx::future<int> f = hpx::async(fibonacci, n-1); 
 
 
    int r = fibonacci(n-2); 
    return f.get() + r; 
} 
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Fibonacci Number Sequence 

• The pathologic corner case: 
 

int fibonacci(int n); 
 
HPX_REGISTER_PLAIN_ACTION(fibonacci); // Defines fibonacci_action. 
fibonacci_action fib; 
 
int fibonacci(int n) 
{ 
    if (n < 2) return n; 
 
    hpx::id_type loc = hpx::find_here(); 
    hpx::future<int> f = hpx::async(fib, loc, n-1); 
 
    int r = fib(loc, n-2); 
    return f.get() + r; 
} 
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SOME IMPLEMENTATION DETAILS 
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How do we craft parallel algorithms with HPX? 

By coding functionally! 

Why functional? 
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Think Functionally! 

• Coding functionally implicitly breaks algorithms 
down into finer grained atoms (functions) which 
have clearly defined inputs (arguments) and 
outputs (return values). 

– Finer grained units of execution are easier to 
dynamically load balance. 

– Modern hardware facilitates very fine grain threading. 

• The dependencies between these atoms can be 
identified in a straightforward fashion. 
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Think Functionally! 
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Overhead: HPX-threads 

35 

2 µs 
of overhead to create and use an HPX-thread 

(hardware: 8 hexa-core AMD Opteron with 96G DDR2)  

50 ns 
to perform the context switch between HPX-threads 

(hardware: 1 quad-core Intel Sandy Bridge with 16G DDR3) 

𝟐𝟏𝟖 threads per GB of RAM 
can run concurrently with HPX with the minimum stack size 

(hardware: x86-64) 
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Global Identifiers (GIDs) 

• Global identifiers (GIDs, hpx::id_type) provide 
a way to refer to objects in a computing 
environment that spans shared-memory 
boundaries. 

• hpx::find_here() – Returns the GID that refers 
to the object that provides runtime services on 
this locality. 
– This is effectively the GID of a locality. 

• hpx::find_all_localities() – Return an 
std::vector<hpx::id_type> which contains 
the GIDs of all available localities. 
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Actions 

• Actions – The building blocks of asynchronous 
execution in HPX.  

– Actions wrap C++ Functions into remotable 
Function Objects (Function Objects which can be 
transported to and invoked on other localities). 

– The return type of an action must be serializable. 

– HPX utilizes Boost.Serialization for serializing 
functions. 
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Actions 

• HPX has two forms of actions. 

– Plain actions wrap global functions. 

– Component actions wrap member functions.  

• How do actions fit in with other ParalleX 
constructs in HPX? 

– A parcel’s payload is an action. 

– Each action is executed in its own HPX-thread. 
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Actions Example 

 

int add(int x, int y) { return x + y; } 

 

// Plain actions wrap global functions. 

// This macro defines the action type add_action. 

HPX_REGISTER_PLAIN_ACTION(add); 

 

void foo() { 

    add_action f; 

 

    // Actions are function objects. 

    f(hpx::find_here(), 2, 2);  

 

    // std::bind can be used to bind actions, but std::bind isn’t 

    // serializable – hpx::bind is.  

    hpx::bind(f, hpx::find_here(), _1, 5)(7);  

} 

 

39 5/17/2012 http://stellar.cct.lsu.edu 



Components 

• Components  - Classes that are globally 
named, meaning they can be referenced from 
any locality. 

• Components expose methods that can be 
called remotely (component actions). 

• Writing components is easy. A class just needs 
to inherit from a component base class and 
implement actions. 
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Components Example 

 

 

struct counter : hpx::components::simple_component_base<counter> { 

    int value; 

  public: 

    int increment() { return ++value; } 

 

    // Component actions wrap member functions. 

    // This macro defines the action type increment_action. 

    HPX_DEFINE_COMPONENT_ACTION(counter, increment, increment_action); 

}; 

 

// This macro must be called explicitly for component actions only 

// because it must go in the global namespace.  

HPX_REGISTER_ACTION((counter)(increment_action)); 
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LCOs (Local Control Objects) 

• LCOs are concurrency control primitives. 

– LCOs can be used to control and coordinate the 
execution of multiple HPX-threads. 

Synchrony 
Primitives 

Asynchrony 
Primitives  

Dependency-driven 
Primitives 

• Mutexes 
• Spinlocks 
• Barriers 
• Condition Variables 

• Futures 
• Promises 

• Dataflows 
• Queues 
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Future LCOs 

• Future LCOs are 
essential to HPX 
because they are the 
primary method of 
controlling asynchrony 
in HPX. 

• Compatible with 
std::future<>. 

• Futures act as proxies 
for values that are 
being computed 
asynchronously by 
actions. 

Locality 1 

Suspend  
consumer 
thread  

Execute  
another  
thread 

Resume  
consumer 
thread 

Locality 2 

Execute  
Future: 
 

Producer  
thread 

Future object  

Result is being  
returned 

43 5/17/2012 http://stellar.cct.lsu.edu 



Future LCOs 
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Overhead: Future LCOs 

45 

17 µs 
of overhead to create and use an hpx::future<> 

(hardware: 8 hexa-core AMD Opteron with 96G DDR2)   
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Controlling Asynchrony 

• Three ways to invoke functions: 

– Synchronously – Wait for the function to execute. 

– Asynchronously – Don’t wait for the function to 
execute and make the result of the function 
available through polling (checking if the result is 
ready) or callback functions (functions invoked 
when the result is ready). 

– Fire and Forget – Don’t wait for the function to 
execute and disregard its result. 
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Controlling Asynchrony 

• id is a global identifier (GID). 

R f(a...) 
Synchronous 
(returns R) 

Asynchronous 
(returns hpx::future<R>) 

Fire and Forget 
(returns void) 

Functions 
(Direct) 

 f(a...)  async(f, a...)  apply(f, a...) 

Functions 
(Lazy) 

 bind(f, a...)  async(bind(f, a...))  apply(bind(f, a...)) 

Actions 
(Direct) 

 f(id, a...)  async(f, id, a...)  apply(f, id, a...) 

Actions 
(Lazy) 

 bind(f, id, a...)  async(bind(f, id, a...))  apply(bind(f, id, a...)) 
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Naïve Futurized Fibonacci 

 

 

 

int fibonacci(int n) { 

    if (n < 2) return n; 

 

    // Asynchronously launch the creation of one of the sub-terms of the 

    // execution graph. 

    hpx::future<int> f = hpx::async(fibonacci, n - 1); 

    int r = fibonacci(n - 2); 

 

    // Wait for f to finish, then add it to r. 

    return f.get() + r; 

} 
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Fibonacci with Continuations 

hpx::future<int> fibonacci(hpx::future<int> const& n) { 

    if (n.get() < 2) return n;  

    return hpx::async(fibonacci, n.get() - 1).when(fibonacci_continuation(n)); 

} 

 

hpx::future<int> fibonacci(int n) { 

    if (n < 2) return hpx::create_future_value(n); 

    return fibonacci(hpx::create_future_value(n)); 

} 

 

struct fibonacci_continuation { 

    typedef int result_type; 

    hpx::future<int> n_; 

    fibonacci_continuation(hpx::future<int> n) : n_(n) {} 

 

    result_type operator()(hpx::future<int> res) const { 

        return fibonacci(n_.get() - 2).get() + res.get(); 

    } 

}; 
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Dataflow LCOs 

• Dataflow LCOs are an extension of 
futures that enable dependency-
driven asynchrony. 

• Compatible with std::future<>. 

• Computation of the action 
associated with a dataflow does 
not begin until all the arguments 
of the dataflow are ready. 
– Non-LCO arguments are always 

ready. 

– LCO arguments, such as futures, 
might not be ready. 
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Dataflow Interest Calculator 

 

double calc(double principal, double rate) { return principal * rate; } 

 

double add(double principal, double interest) { return principal + interest; } 

 

double interest(double principal, double rate, int time) { 

    hpx::dataflow_value<double> principal = hpx::create_dataflow_value(p); 

    hpx::dataflow_value<double> rate = hpx::create_dataflow_value(i_rate); 

 

    for (int i = 0; i < time; ++i) { 

        hpx::dataflow_value<double> interest 

            = hpx::dataflow(calc, principal, rate); 

        principal = hpx::dataflow(add, principal, interest); 

    } 

 

    return principal.get(); 

} 
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Data Distribution 

• We often want to ask HPX to distribute 
components across all available localities for us. 

• Factories – Components which create and 
distributed objects according to a certain policy. 

• Policies could distribute objects according to the 
number of cores on each locality, the amount of 
local memory on each locality, the number of 
GPGPUs on each locality, etc. 
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Nonintrusive Components 

• Components are fine, but implementing them 
is intrusive. 

• hpx::object<> – Non-intrusively adapts a 
type into a component. 

• hpx::new_<>() – Creates an hpx::object<> 
instance on a specific locality. 

• Remotable Function Objects (actions and 
serializable Function Objects) can be applied 
to types wrapped in this fashion. 
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Nonintrusive Components Example 

 

 

struct A { 

    A(int i = 0) : i_(i) {} 

    int i_; 

}; 

 

void output(A const& a) { hpx::cout << a.i_ << "\n" << hpx::flush; } 

HPX_PLAIN_ACTION(output, output_action) 

 

void bar(hpx::id_type const& locality) { 

    hpx::future<hpx::object<A> > a = hpx::new_<A>(locality, 17); 

 

    // Monadic syntax. 

    (o <= output_action()).get(); // output_action() is an unnamed temporary. 

} 
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REAL APPLICATIONS 

55 5/17/2012 http://stellar.cct.lsu.edu 



Overview 

• Advanced global address space parallel 
methods to enable neutron star simulations 
with a tabulated equation of state 

• Dynamic load balancing via message-driven 
work-queue execution for Adaptive Mesh 
Refinement (AMR) applications 

• Other applications:  Particle-In-Cell, Symmetric 
Contact, N-body 
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Global Address Space Models 

• One controversial issue is the relative value of 
global address space models and 
management versus more conventional 
distributed memory structure.  

• Finite temperature Equations of State for 
Neutron star simulations provides a nice 
venue for exploring this 
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Neutron Star Simulations 
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A little about Equations of State 

• Realistic equations of state generally cannot 
be computed “in place”:  they must be 
precomputed and placed in tables 

• These tables tend to be too large (many GB’s) 
for application using conventional practices 

• Conventional practice is to read in the table 
for each core 

• Current generation tables are reaching out-of-
core sizes 
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Equation of State Tables 

• A 2 x 2 x 2 cube of double-precision floating 
numbers must be accessed for trilinear 
interpolation 

• The aggregate size of accessed data volume 
for neutron star simulations significantly 
exceeds the combined size of L3 processor 
caches. 

• Performance of equation of state 
interpolation is memory bound 
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Table Access Based on Futures 

Each locality has a client side object allowing 
transparent access to all of the table data. The table 
itself is partitioned into chunks. 63 

Application using Shen EOS Tables 

SC SC SC 

Locality 1 Locality 2 Locality N 

Part 1 Part 2 Part N 

… 

… 
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ShenEOS Example 

 

 

 

 

 

std::size_t num_partitions = 32; 

char const* shen_table = "sheneos.h5"; 

char const* shen_symbolic_name = "/neutron_star/sheneos"; 

 

// Create a distributed interpolation object. 

sheneos::interpolator shen; 

shen.create(shen_table, shen_symbolic_name,num_partitions); 
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ShenEOS Example 

// Connect to our distributed interpolation object. 

sheneos::interpolator shen; 

shen.connect("/neutron_star/sheneos"); 

 

std::vector<hpx::future<std::vector<double> > eosaccess; 

for (std::size_t k; k < value.ksize(); ++k) { 

    for (std::size_t j; j < value.jsize(); ++j) { 

        for (std::size_t i; i < value.isize(); ++i) { 

            auto ye = xye(i, j, k); 

            auto temp = xtemp(i, j, k); 

            auto rho = xrho(i, j, k); 

            eosaccess.push_back(shen.interpolate_async(ye, temp, rho)); 

        } 

    } 

} 

 

auto callback = boost::bind(fill_in_primitives, _1, _2, boost::ref(value)); 

hpx::wait(eosaccess, callback); 
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Weak Scaling for Table Access 
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We compare Futures 
with OpenMP table 
access.  When no 
work is overlapped, 
both OpenMP and 
Futures show 
significant slowdown 
in concurrent table 
access.  But by 
overlapping usable 
workload with the 
table access using 
Futures, the  
table access 
slowdown becomes 
negligible. 
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Distributed Table Access 
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Out-of-core sized 
tables are 
increasingly 
common.  The 
Futures approach 
to table access 
Works just as well 
in distributed 
memory settings as 
in shared memory 
settings. 
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Key Points from this Example 

• AGAS models together with futures 
significantly simplify hiding network latency 
and amortizing contention. 

• The conventional distributed memory 
structure isn’t a viable option for high volume, 
random coordinate stream table access 
applications. 
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Dynamic Load Balancing via Message-driven Work-
queue Execution for Adaptive Mesh Refinement (AMR) 
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Removing Global Barriers 

Remove all global 
barriers using 
dataflow; make 
the grain size of 
computation 
adjustable at 
runtime 
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The Impact of Granularity 
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The Impact of Granularity 
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Competing Effects 
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Granularity and Performance 
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Optimal Grain Size 
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3-D Results 
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3-D Results: MPI/HPX 
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Key Points from this Example 

• Message-driven work-queue execution 
performance can depend significantly on the 
grain size of the problem.  An optimal grain 
size exists. 

• Load balancing can be accomplished implicitly 
using the work-queue execution approach and 
thereby substantially improve efficiency 
compared with the conventional approach 
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GTC: 3-D Gyrokinetic Toroidal Code 
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Symmetric Contact for Deformation 

• Uses Boost.Geometry for contact iteration in 
conjunction with futures and AGAS. 

• Applications include impulsive loading 
computations. 
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N-Body 
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See Int. J.  High Perform C, 11 Apr 2012 
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CONCLUSIONS 
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Conclusions 

• Message driven, multithreaded approaches can 
significantly improve performance in scaling 
constrained applications 

• HPX overheads are generally larger than those in 
OpenMP and MPI 

• HPX outperforms conventional approaches when it 
hides latencies, amortizes contention, and implicitly 
load balances 

• AGAS enables simulation capability not presently 
available elsewhere 

• HPX enables medium and fine grained computation in 
both SMP and distributed settings 
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