
HPX:
A C++11 Distributed Runtime System

Bryce Adelstein-Lelbach, Hartmut Kaiser, Matthew Anderson

Louisiana State University, Indiana University

stellar.cct.lsu.edu

http://stellar.cct.lsu.edu/

THE BIGGER PICTURE

2 5/17/2012 http://stellar.cct.lsu.edu

Technology Demands New Responses

3 5/17/2012 http://stellar.cct.lsu.edu

Technology Demands New Responses

4 5/17/2012 http://stellar.cct.lsu.edu

Technology Demands New Responses

5 5/17/2012 http://stellar.cct.lsu.edu

Amdahl’s Law (Strong Scaling)

6

𝑆 =
1

1 − 𝑃 +
𝑃
𝑁

S: Speedup

P: Proportion of parallel code

N: Number of processors

5/17/2012 http://stellar.cct.lsu.edu

Gustafson’s Law (Weak Scaling)

𝑆 = 𝑁𝑃 − 𝑃 + 1

S: Speedup

P: Proportion of parallel code

N: Number of processors

7 5/17/2012 http://stellar.cct.lsu.edu

The 4 Horsemen of the Apocalypse: SLOW

• Starvation
– Insufficient concurrent work to

maintain high utilization of resources.

• Latencies
– Time-distance delay of remote

resource access and services.

• Overheads
– Work for management of parallel

actions and resources on critical path
which are not necessary in sequential
variant.

• Waiting for Contention Resolution
– Delays due to lack of availability of

oversubscribed shared resource.

8 5/17/2012 http://stellar.cct.lsu.edu

The 4 Horsemen of the Apocalypse: SLOW

• Starvation
– Insufficient concurrent work to

maintain high utilization of resources.

• Latencies
– Time-distance delay of remote

resource access and services.

• Overheads
– Work for management of parallel

actions and resources on critical path
which are not necessary in sequential
variant.

• Waiting for Contention Resolution
– Delays due to lack of availability of

oversubscribed shared resource.

9 5/17/2012 http://stellar.cct.lsu.edu

Main Runtime System Tasks

• Manage parallel execution for the application Starvation

– Exposing parallelism, runtime adaptive management of parallelism and
resources.

– Synchronizing parallel tasks.

– Thread (task) scheduling, load balancing, object migration.

• Mitigate latencies for the application Latency

– Latency hiding through overlap of computation and communication.

– Latency avoidance through locality management.

• Reduce overhead for the application Overhead

– Synchronization, scheduling, load balancing, communication, context
switching, memory management, address translation.

• Resolve contention for the application Contention

– Adaptive routing, resource scheduling, load balancing.

– Localized request buffering for logical resources.

10 5/17/2012 http://stellar.cct.lsu.edu

What’s HPX?

• Active global address space (AGAS) instead of PGAS.

• Message driven instead of message passing.

• Lightweight control objects instead of global barriers.

• Latency hiding instead of latency avoidance.

• Adaptive locality control instead of static data
distribution.

• Moving work to data instead of moving data to work.

• Fine grained parallelism of lightweight threads instead
of Communicating Sequential Processes (CSP/MPI).

• Open source – Boost Software License.

11 5/17/2012 http://stellar.cct.lsu.edu

HPX Runtime System Design

• Current version of HPX provides the following
infrastructure on conventional systems as defined
by the ParalleX execution model.
– Active Global Address Space (AGAS).

– HPX Threads and Thread Management.

– Parcel Transport and Parcel Management.

– Local Control Objects (LCOs).

– HPX Processes (distributed objects).
• Namespace and policies management, locality control.

– Monitoring subsystem.

12 5/17/2012 http://stellar.cct.lsu.edu

HPX Runtime System Design

• Current version of HPX provides the following
infrastructure on conventional systems as defined
by the ParalleX execution model.
– Active Global Address Space (AGAS).

– HPX Threads and Thread Management.

– Parcel Transport and Parcel Management.

– Local Control Objects (LCOs).

– HPX Processes (distributed objects).
• Namespace and policies management, locality control.

– Monitoring subsystem.

13

Thread
Manager

Thread
Pool

LCOs

AGAS Address
Translation

Action
Manager

Interconnect

Parcel
Handler

Parcel
Port

Process Manager
Local Memory
Management

Performance Monitor

Performance Counters

…

5/17/2012 http://stellar.cct.lsu.edu

Active Global Address Space

• Global Address Space throughout the system.
– Removes dependency on static data distribution.
– Enables dynamic load balancing of application and system data.

• AGAS assigns global names (identifiers, unstructured 128 bit integers) to all
entities managed by HPX.

• Unlike PGAS provides a mechanism to resolve global identifiers into corresponding
local virtual addresses (LVA).
– LVAs comprise – Locality ID, type of entity being referenced and its local memory address.
– Moving an entity to a different locality updates this mapping.
– Current implementation is based on centralized database storing the mappings which are

accessible over the local area network.
– Local caching policies have been implemented to prevent bottlenecks and minimize the

number of required round-trips.

• Current implementation allows autonomous creation of globally unique ids in the
locality where the entity is initially located and supports memory pooling of similar
objects to minimize overhead.

• Implemented garbage collection scheme of HPX objects.

14 5/17/2012 http://stellar.cct.lsu.edu

Active Global Address Space

• Global Address Space throughout the system.
– Removes dependency on static data distribution.
– Enables dynamic load balancing of application and system data.

• AGAS assigns global names (identifiers, unstructured 128 bit integers) to all
entities managed by HPX.

• Unlike PGAS provides a mechanism to resolve global identifiers into corresponding
local virtual addresses (LVA).
– LVAs comprise – Locality ID, type of entity being referenced and its local memory address.
– Moving an entity to a different locality updates this mapping.
– Current implementation is based on centralized database storing the mappings which are

accessible over the local area network.
– Local caching policies have been implemented to prevent bottlenecks and minimize the

number of required round-trips.

• Current implementation allows autonomous creation of globally unique ids in the
locality where the entity is initially located and supports memory pooling of similar
objects to minimize overhead.

• Implemented garbage collection scheme of HPX objects.

15

Thread
Manager

Thread
Pool

LCOs

AGAS Address
Translation

Action
Manager

Interconnect

Parcel
Handler

Parcel
Port

Process Manager
Local Memory
Management

Performance Monitor

Performance Counters

…

5/17/2012 http://stellar.cct.lsu.edu

Thread Management

• Thread manager is modular and implements a work-
queue based task management

• Threads are cooperatively scheduled at user level
without requiring a kernel transition

• Specially designed synchronization primitives such as
semaphores, mutexes etc. allow synchronization of
HPX- threads in the same way as conventional threads

• Thread management currently supports several key
modes
– Global Thread Queue
– Local Queue (work stealing)
– Local Priority Queue (work stealing)

16 5/17/2012 http://stellar.cct.lsu.edu

Thread Management

• Thread manager is modular and implements a work-
queue based task management

• Threads are cooperatively scheduled at user level
without requiring a kernel transition

• Specially designed synchronization primitives such as
semaphores, mutexes etc. allow synchronization of
HPX- threads in the same way as conventional threads

• Thread management currently supports several key
modes
– Global Thread Queue
– Local Queue (work stealing)
– Local Priority Queue (work stealing)

17

Thread
Manager

Thread
Pool

LCOs

AGAS Address
Translation

Action
Manager

Interconnect

Parcel
Handler

Parcel
Port

Process Manager
Local Memory
Management

Performance Monitor

Performance Counters

…

5/17/2012 http://stellar.cct.lsu.edu

Parcel Management

• Active messages (parcels)

• Destination address, function to execute, parameters, continuation

• Any inter-locality messaging is based on Parcels

• In HPX parcels are represented as polymorphic objects

• An HPX entity on creating a parcel object hands it to the parcel
handler.

• The parcel handler serializes the parcel where all dependent data is
bundled along with the parcel

• At the receiving locality the
parcel is de-serialized and
causes a HPX thread to be
created based on its content

Locality 2Locality 1

Parcel Handler

parcel

object

Action Manager

HPX Threads

put()

Serialized Parcel De-serialized Parcel

18 5/17/2012 http://stellar.cct.lsu.edu

Parcel Management

• Active messages (parcels)

• Destination address, function to execute, parameters, continuation

• Any inter-locality messaging is based on Parcels

• In HPX parcels are represented as polymorphic objects

• An HPX entity on creating a parcel object hands it to the parcel
handler.

• The parcel handler serializes the parcel where all dependent data is
bundled along with the parcel

• At the receiving locality the
parcel is de-serialized and
causes a HPX thread to be
created based on its content

19 5/17/2012 http://stellar.cct.lsu.edu

Locality 2Locality 1

Parcel Handler

parcel

object

Action Manager

HPX Threads

put()

Serialized Parcel De-serialized Parcel

Thread
Manager

Thread
Pool

LCOs

AGAS Address
Translation

Action
Manager

Interconnect

Parcel
Handler

Parcel
Port

Process Manager
Local Memory
Management

Performance Monitor

Performance Counters

…

Constraint-based Synchronization

• Compute dependencies at
task instantiation time.

• No global barriers, uses
constraint based
synchronization.

• Computation flows at its
own pace.

• Message driven.
• Symmetry between local

and remote task
creation/execution.

• Possibility to control grain
size.

20 5/17/2012 http://stellar.cct.lsu.edu

LCOs (Local Control Objects)

• LCOs provide a means of controlling parallelization and
synchronization of HPX-threads.

• Enable event-driven thread creation and can support in-
place data structure protection and on-the-fly scheduling.

• Preferably embedded in the data structures they protect.
• Abstraction of a multitude of different functionalities for.

– Event driven PX-thread creation.
– Protection of data structures from race conditions.
– Automatic on-the-fly scheduling of work.

• LCO may create (or reactivate) a HPX-thread as a result of
“being triggered”.

21 5/17/2012 http://stellar.cct.lsu.edu

LCOs (Local Control Objects)

• LCOs provide a means of controlling parallelization and
synchronization of HPX-threads.

• Enable event-driven thread creation and can support in-
place data structure protection and on-the-fly scheduling.

• Preferably embedded in the data structures they protect.
• Abstraction of a multitude of different functionalities for.

– Event driven PX-thread creation.
– Protection of data structures from race conditions.
– Automatic on-the-fly scheduling of work.

• LCO may create (or reactivate) a HPX-thread as a result of
“being triggered”.

Thread
Manager

Thread
Pool

LCOs

AGAS Address
Translation

Action
Manager

Interconnect

Parcel
Handler

Parcel
Port

Process Manager
Local Memory
Management

Performance Monitor

Performance Counters

…

22 5/17/2012 http://stellar.cct.lsu.edu

Hello HPX World

• Simplest HPX program:

#include <hpx/hpx.hpp>

#include <hpx/iostream.hpp>

int hpx_main()

{

 hpx::cout << "Hello HPX World!\n";

 return hpx::finalize();

}

int main(int argc, char* argv[])

{

 return hpx::init(argc, argv);

}

23 5/17/2012 http://stellar.cct.lsu.edu

Hello HPX World

• HPX program with remote actions:

void say_hello()

{

 hpx::cout << "Hello HPX World from locality: " <<

 << hpx::get_locality_id() << "!\n";

}

HPX_REGISTER_PLAIN_ACTION(say_hello); // Defines say_hello_action.

int hpx_main()

{

 say_hello_action sayit;

 for (auto loc: hpx::find_all_localities())

 hpx::apply(sayit, loc);

 return hpx::finalize();

}

 24 5/17/2012 http://stellar.cct.lsu.edu

Hello HPX World

• HPX program with synchronized parallel
remote actions:

int hpx_main()

{

 std::vector<hpx::lcos::future<void> > ops;

 say_hello_action sayit;

 for (auto loc: hpx::find_all_localities())

 ops.push_back(hpx::async(sayit, loc));

 hpx::wait_all(ops);

 return hpx::finalize();

}

25 5/17/2012 http://stellar.cct.lsu.edu

HPX – The API

• Fully asynchronous
– All possibly remote operations are asynchronous by

default.
• Fire and forget semantics (result is not available).

• Pure asynchronous semantics (result is available via
hpx::future).

– Composition of asynchronous operations.
• hpx::wait_all, hpx::wait_any, hpx::wait_n

• hpx::future::when(f)

– Can be used synchronously, but doesn’t block.
• HPX-Thread is suspended while waiting for result.

26 5/17/2012 http://stellar.cct.lsu.edu

HPX – The API

• As close as possible to C++11 standard library,
where appropriate, for instance
– std::thread  hpx::thread

– std::mutex  hpx::mutex

– std::future  hpx::future

– std::async  hpx::async

– std::bind  hpx::bind

– std::function  hpx::function

– std::cout  hpx::cout

27 5/17/2012 http://stellar.cct.lsu.edu

HPX – The API

• Fully move enabled (using Boost.Move)
– hpx::bind, hpx::function, hpx::tuple

• Fully type safe
– Extends the notion of a callabl’ to remote case (actions).

– Everything you can do with functions is possible with
actions as well.

• Usable in remote contexts.
– Can be sent over the wire (hpx::bind, hpx::function).

– Can be used with actions (hpx::async, hpx::bind,
hpx::function).

28 5/17/2012 http://stellar.cct.lsu.edu

Fibonacci Number Sequence

• The pathologic corner case:

int fibonacci(int n);

int fibonacci(int n)
{
 if (n < 2) return n

 hpx::future<int> f = hpx::async(fibonacci, n-1);

 int r = fibonacci(n-2);
 return f.get() + r;
}

29 5/17/2012 http://stellar.cct.lsu.edu

Fibonacci Number Sequence

• The pathologic corner case:

int fibonacci(int n);

HPX_REGISTER_PLAIN_ACTION(fibonacci); // Defines fibonacci_action.
fibonacci_action fib;

int fibonacci(int n)
{
 if (n < 2) return n;

 hpx::id_type loc = hpx::find_here();
 hpx::future<int> f = hpx::async(fib, loc, n-1);

 int r = fib(loc, n-2);
 return f.get() + r;
}

30 5/17/2012 http://stellar.cct.lsu.edu

SOME IMPLEMENTATION DETAILS

31 5/17/2012 http://stellar.cct.lsu.edu

How do we craft parallel algorithms with HPX?

By coding functionally!

Why functional?

32 5/17/2012 http://stellar.cct.lsu.edu

Think Functionally!

• Coding functionally implicitly breaks algorithms
down into finer grained atoms (functions) which
have clearly defined inputs (arguments) and
outputs (return values).

– Finer grained units of execution are easier to
dynamically load balance.

– Modern hardware facilitates very fine grain threading.

• The dependencies between these atoms can be
identified in a straightforward fashion.

33 5/17/2012 http://stellar.cct.lsu.edu

Think Functionally!

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50

Ex
e

cu
ti

o
n

 T
im

e
 [

s]

Number of Cores

Time for Execution of 500000 Threads
(Artificial Work: 100µs)

HPX

Qthreads

TBB

SWARM

34 5/17/2012 http://stellar.cct.lsu.edu

Overhead: HPX-threads

35

2 µs
of overhead to create and use an HPX-thread

(hardware: 8 hexa-core AMD Opteron with 96G DDR2)

50 ns
to perform the context switch between HPX-threads

(hardware: 1 quad-core Intel Sandy Bridge with 16G DDR3)

𝟐𝟏𝟖 threads per GB of RAM
can run concurrently with HPX with the minimum stack size

(hardware: x86-64)

5/17/2012 http://stellar.cct.lsu.edu

Global Identifiers (GIDs)

• Global identifiers (GIDs, hpx::id_type) provide
a way to refer to objects in a computing
environment that spans shared-memory
boundaries.

• hpx::find_here() – Returns the GID that refers
to the object that provides runtime services on
this locality.
– This is effectively the GID of a locality.

• hpx::find_all_localities() – Return an
std::vector<hpx::id_type> which contains
the GIDs of all available localities.

36 5/17/2012 http://stellar.cct.lsu.edu

Actions

• Actions – The building blocks of asynchronous
execution in HPX.

– Actions wrap C++ Functions into remotable
Function Objects (Function Objects which can be
transported to and invoked on other localities).

– The return type of an action must be serializable.

– HPX utilizes Boost.Serialization for serializing
functions.

37 5/17/2012 http://stellar.cct.lsu.edu

Actions

• HPX has two forms of actions.

– Plain actions wrap global functions.

– Component actions wrap member functions.

• How do actions fit in with other ParalleX
constructs in HPX?

– A parcel’s payload is an action.

– Each action is executed in its own HPX-thread.

38 5/17/2012 http://stellar.cct.lsu.edu

Actions Example

int add(int x, int y) { return x + y; }

// Plain actions wrap global functions.

// This macro defines the action type add_action.

HPX_REGISTER_PLAIN_ACTION(add);

void foo() {

 add_action f;

 // Actions are function objects.

 f(hpx::find_here(), 2, 2);

 // std::bind can be used to bind actions, but std::bind isn’t

 // serializable – hpx::bind is.

 hpx::bind(f, hpx::find_here(), _1, 5)(7);

}

39 5/17/2012 http://stellar.cct.lsu.edu

Components

• Components - Classes that are globally
named, meaning they can be referenced from
any locality.

• Components expose methods that can be
called remotely (component actions).

• Writing components is easy. A class just needs
to inherit from a component base class and
implement actions.

40 5/17/2012 http://stellar.cct.lsu.edu

Components Example

struct counter : hpx::components::simple_component_base<counter> {

 int value;

 public:

 int increment() { return ++value; }

 // Component actions wrap member functions.

 // This macro defines the action type increment_action.

 HPX_DEFINE_COMPONENT_ACTION(counter, increment, increment_action);

};

// This macro must be called explicitly for component actions only

// because it must go in the global namespace.

HPX_REGISTER_ACTION((counter)(increment_action));

41 5/17/2012 http://stellar.cct.lsu.edu

LCOs (Local Control Objects)

• LCOs are concurrency control primitives.

– LCOs can be used to control and coordinate the
execution of multiple HPX-threads.

Synchrony
Primitives

Asynchrony
Primitives

Dependency-driven
Primitives

• Mutexes
• Spinlocks
• Barriers
• Condition Variables

• Futures
• Promises

• Dataflows
• Queues

42 5/17/2012 http://stellar.cct.lsu.edu

Future LCOs

• Future LCOs are
essential to HPX
because they are the
primary method of
controlling asynchrony
in HPX.

• Compatible with
std::future<>.

• Futures act as proxies
for values that are
being computed
asynchronously by
actions.

Locality 1

Suspend
consumer
thread

Execute
another
thread

Resume
consumer
thread

Locality 2

Execute
Future:

Producer
thread

Future object

Result is being
returned

43 5/17/2012 http://stellar.cct.lsu.edu

Future LCOs

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50

St
ro

n
g

Sc
al

in
g

(N

o
rm

al
iz

e
d

 t
o

 1
 O

S
Th

re
ad

)

Number of Cores

Strong Scaling for 100k Futures

0µs

10µs

19µs

38µs

76µs

150µs

300µs

Workload

44 5/17/2012 http://stellar.cct.lsu.edu

Overhead: Future LCOs

45

17 µs
of overhead to create and use an hpx::future<>

(hardware: 8 hexa-core AMD Opteron with 96G DDR2)

5/17/2012 http://stellar.cct.lsu.edu

Controlling Asynchrony

• Three ways to invoke functions:

– Synchronously – Wait for the function to execute.

– Asynchronously – Don’t wait for the function to
execute and make the result of the function
available through polling (checking if the result is
ready) or callback functions (functions invoked
when the result is ready).

– Fire and Forget – Don’t wait for the function to
execute and disregard its result.

46 5/17/2012 http://stellar.cct.lsu.edu

Controlling Asynchrony

• id is a global identifier (GID).

R f(a...)
Synchronous
(returns R)

Asynchronous
(returns hpx::future<R>)

Fire and Forget
(returns void)

Functions
(Direct)

 f(a...) async(f, a...) apply(f, a...)

Functions
(Lazy)

 bind(f, a...) async(bind(f, a...)) apply(bind(f, a...))

Actions
(Direct)

 f(id, a...) async(f, id, a...) apply(f, id, a...)

Actions
(Lazy)

 bind(f, id, a...) async(bind(f, id, a...)) apply(bind(f, id, a...))

47 5/17/2012 http://stellar.cct.lsu.edu

Naïve Futurized Fibonacci

int fibonacci(int n) {

 if (n < 2) return n;

 // Asynchronously launch the creation of one of the sub-terms of the

 // execution graph.

 hpx::future<int> f = hpx::async(fibonacci, n - 1);

 int r = fibonacci(n - 2);

 // Wait for f to finish, then add it to r.

 return f.get() + r;

}

48 5/17/2012 http://stellar.cct.lsu.edu

Fibonacci with Continuations

hpx::future<int> fibonacci(hpx::future<int> const& n) {

 if (n.get() < 2) return n;

 return hpx::async(fibonacci, n.get() - 1).when(fibonacci_continuation(n));

}

hpx::future<int> fibonacci(int n) {

 if (n < 2) return hpx::create_future_value(n);

 return fibonacci(hpx::create_future_value(n));

}

struct fibonacci_continuation {

 typedef int result_type;

 hpx::future<int> n_;

 fibonacci_continuation(hpx::future<int> n) : n_(n) {}

 result_type operator()(hpx::future<int> res) const {

 return fibonacci(n_.get() - 2).get() + res.get();

 }

};

49 5/17/2012 http://stellar.cct.lsu.edu

Dataflow LCOs

• Dataflow LCOs are an extension of
futures that enable dependency-
driven asynchrony.

• Compatible with std::future<>.

• Computation of the action
associated with a dataflow does
not begin until all the arguments
of the dataflow are ready.
– Non-LCO arguments are always

ready.

– LCO arguments, such as futures,
might not be ready.

50 5/17/2012 http://stellar.cct.lsu.edu

Dataflow Interest Calculator

double calc(double principal, double rate) { return principal * rate; }

double add(double principal, double interest) { return principal + interest; }

double interest(double principal, double rate, int time) {

 hpx::dataflow_value<double> principal = hpx::create_dataflow_value(p);

 hpx::dataflow_value<double> rate = hpx::create_dataflow_value(i_rate);

 for (int i = 0; i < time; ++i) {

 hpx::dataflow_value<double> interest

 = hpx::dataflow(calc, principal, rate);

 principal = hpx::dataflow(add, principal, interest);

 }

 return principal.get();

}

51 5/17/2012 http://stellar.cct.lsu.edu

Data Distribution

• We often want to ask HPX to distribute
components across all available localities for us.

• Factories – Components which create and
distributed objects according to a certain policy.

• Policies could distribute objects according to the
number of cores on each locality, the amount of
local memory on each locality, the number of
GPGPUs on each locality, etc.

52 5/17/2012 http://stellar.cct.lsu.edu

Nonintrusive Components

• Components are fine, but implementing them
is intrusive.

• hpx::object<> – Non-intrusively adapts a
type into a component.

• hpx::new_<>() – Creates an hpx::object<>
instance on a specific locality.

• Remotable Function Objects (actions and
serializable Function Objects) can be applied
to types wrapped in this fashion.

53 5/17/2012 http://stellar.cct.lsu.edu

Nonintrusive Components Example

struct A {

 A(int i = 0) : i_(i) {}

 int i_;

};

void output(A const& a) { hpx::cout << a.i_ << "\n" << hpx::flush; }

HPX_PLAIN_ACTION(output, output_action)

void bar(hpx::id_type const& locality) {

 hpx::future<hpx::object<A> > a = hpx::new_<A>(locality, 17);

 // Monadic syntax.

 (o <= output_action()).get(); // output_action() is an unnamed temporary.

}

54 5/17/2012 http://stellar.cct.lsu.edu

REAL APPLICATIONS

55 5/17/2012 http://stellar.cct.lsu.edu

Overview

• Advanced global address space parallel
methods to enable neutron star simulations
with a tabulated equation of state

• Dynamic load balancing via message-driven
work-queue execution for Adaptive Mesh
Refinement (AMR) applications

• Other applications: Particle-In-Cell, Symmetric
Contact, N-body

56 5/17/2012 http://stellar.cct.lsu.edu

Global Address Space Models

• One controversial issue is the relative value of
global address space models and
management versus more conventional
distributed memory structure.

• Finite temperature Equations of State for
Neutron star simulations provides a nice
venue for exploring this

57 5/17/2012 http://stellar.cct.lsu.edu

Neutron Star Simulations

58 5/17/2012 http://stellar.cct.lsu.edu

A little about Equations of State

• Realistic equations of state generally cannot
be computed “in place”: they must be
precomputed and placed in tables

• These tables tend to be too large (many GB’s)
for application using conventional practices

• Conventional practice is to read in the table
for each core

• Current generation tables are reaching out-of-
core sizes

59 5/17/2012 http://stellar.cct.lsu.edu

Equation of State Tables

• A 2 x 2 x 2 cube of double-precision floating
numbers must be accessed for trilinear
interpolation

• The aggregate size of accessed data volume
for neutron star simulations significantly
exceeds the combined size of L3 processor
caches.

• Performance of equation of state
interpolation is memory bound

60 5/17/2012 http://stellar.cct.lsu.edu

Table Access Based on Futures

Each locality has a client side object allowing
transparent access to all of the table data. The table
itself is partitioned into chunks. 63

Application using Shen EOS Tables

SC SC SC

Locality 1 Locality 2 Locality N

Part 1 Part 2 Part N

…

…

5/17/2012 http://stellar.cct.lsu.edu

ShenEOS Example

std::size_t num_partitions = 32;

char const* shen_table = "sheneos.h5";

char const* shen_symbolic_name = "/neutron_star/sheneos";

// Create a distributed interpolation object.

sheneos::interpolator shen;

shen.create(shen_table, shen_symbolic_name,num_partitions);

64 5/17/2012 http://stellar.cct.lsu.edu

ShenEOS Example

// Connect to our distributed interpolation object.

sheneos::interpolator shen;

shen.connect("/neutron_star/sheneos");

std::vector<hpx::future<std::vector<double> > eosaccess;

for (std::size_t k; k < value.ksize(); ++k) {

 for (std::size_t j; j < value.jsize(); ++j) {

 for (std::size_t i; i < value.isize(); ++i) {

 auto ye = xye(i, j, k);

 auto temp = xtemp(i, j, k);

 auto rho = xrho(i, j, k);

 eosaccess.push_back(shen.interpolate_async(ye, temp, rho));

 }

 }

}

auto callback = boost::bind(fill_in_primitives, _1, _2, boost::ref(value));

hpx::wait(eosaccess, callback);

65 5/17/2012 http://stellar.cct.lsu.edu

Weak Scaling for Table Access

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12

Sl
ow

do
w

n
R

el
at

iv
e

to
 a

 S
in

gl
e

Co
re

No. of Cores

Weak Scaling - Shen EOS Table
(Table Access Slowdown Relative to a Single Core)

0µs

3.5µs

7µs

14µs

OpenMP

We compare Futures
with OpenMP table
access. When no
work is overlapped,
both OpenMP and
Futures show
significant slowdown
in concurrent table
access. But by
overlapping usable
workload with the
table access using
Futures, the
table access
slowdown becomes
negligible.

66 5/17/2012 http://stellar.cct.lsu.edu

Distributed Table Access

0.95

1

1.05

1.1

1.15

1.2

1.25

2 3 4 5

Sl
o

w
d

o
w

n
 R

e
la

ti
ve

 t
o

 2
 N

o
d

e
s

No. of Nodes (8 Cores/Node)

Weak Scaling - 5.9GByte Shen EOS Table
(Distributed Table Access Slowdown Relative to 2 Nodes)

Out-of-core sized
tables are
increasingly
common. The
Futures approach
to table access
Works just as well
in distributed
memory settings as
in shared memory
settings.

67 5/17/2012 http://stellar.cct.lsu.edu

Key Points from this Example

• AGAS models together with futures
significantly simplify hiding network latency
and amortizing contention.

• The conventional distributed memory
structure isn’t a viable option for high volume,
random coordinate stream table access
applications.

68 5/17/2012 http://stellar.cct.lsu.edu

Dynamic Load Balancing via Message-driven Work-
queue Execution for Adaptive Mesh Refinement (AMR)

69 5/17/2012 http://stellar.cct.lsu.edu

Removing Global Barriers

Remove all global
barriers using
dataflow; make
the grain size of
computation
adjustable at
runtime

70 5/17/2012 http://stellar.cct.lsu.edu

The Impact of Granularity

71 5/17/2012 http://stellar.cct.lsu.edu

The Impact of Granularity

72 5/17/2012 http://stellar.cct.lsu.edu

Competing Effects

73 5/17/2012 http://stellar.cct.lsu.edu

Granularity and Performance

75 5/17/2012 http://stellar.cct.lsu.edu

Optimal Grain Size

76 5/17/2012 http://stellar.cct.lsu.edu

3-D Results

77 5/17/2012 http://stellar.cct.lsu.edu

3-D Results: MPI/HPX

78 5/17/2012 http://stellar.cct.lsu.edu

Key Points from this Example

• Message-driven work-queue execution
performance can depend significantly on the
grain size of the problem. An optimal grain
size exists.

• Load balancing can be accomplished implicitly
using the work-queue execution approach and
thereby substantially improve efficiency
compared with the conventional approach

79 5/17/2012 http://stellar.cct.lsu.edu

GTC: 3-D Gyrokinetic Toroidal Code

80 5/17/2012 http://stellar.cct.lsu.edu

Symmetric Contact for Deformation

• Uses Boost.Geometry for contact iteration in
conjunction with futures and AGAS.

• Applications include impulsive loading
computations.

81 5/17/2012 http://stellar.cct.lsu.edu

N-Body

0

2

4

6

8

10

12

14

16

1 2 4 8 16 28

Sc
al

in
g

(n
o

rm
al

iz
e

d
 t

o
 1

 c
o

re
)

Number of Cores Used

100,000 Particles Scaling Comparisons (10 Iterations)

HPX

OpenMP

See Int. J. High Perform C, 11 Apr 2012
82 5/17/2012 http://stellar.cct.lsu.edu

CONCLUSIONS

83 5/17/2012 http://stellar.cct.lsu.edu

Conclusions

• Message driven, multithreaded approaches can
significantly improve performance in scaling
constrained applications

• HPX overheads are generally larger than those in
OpenMP and MPI

• HPX outperforms conventional approaches when it
hides latencies, amortizes contention, and implicitly
load balances

• AGAS enables simulation capability not presently
available elsewhere

• HPX enables medium and fine grained computation in
both SMP and distributed settings

84 5/17/2012 http://stellar.cct.lsu.edu

stellar.cct.lsu.edu

For SVN access, contact gopx@cct.lsu.edu

85 5/17/2012 http://stellar.cct.lsu.edu

http://stellar.cct.lsu.edu/
http://stellar.cct.lsu.edu/

