Regex In C++11 And Boost

Perl! Templates! Iterators!
By Your Powers Combined, | Am CAPTAIN REGEX!

StephanT. Lavave]
("Steh-fin Lah-wah-wade")
Visual C++ Libraries Developer
sti@microsoft.com

Version 2.0 - May 17, 2012

pegex: Flexible String Processing

Validation: Is this input well-formed?

= Example: Is this a serial number?

Decision: What set does this string belong to?
= Example: Is this filename a JPEG? Is it a PNG?
Parsing: What is in this input?

= Example: What is the year of this date?

Transformation: Format strings for output or further
processing

= EXxample: Escape special characters

Iteration: Find each occurrence of a pattern within a string
= Example: Iterate through all URLs within a string

Tokenization: Systematically split apart a string

= Example: Break a string into whitespace-separated words

Version 2.0 - May 17, 2012

Fegex: Robust String Processing

[Processing strings with regex is superior to
handwritten code
Control flow is difficult to understand and modify

regex simplifies control flow, moving the description of
string processing into the regular expression

Regular expressions are closer to the problem domain
than code, abstracting away much code complexity

Even intricate regular expressions are easier to
understand and modify than equivalent code
regex uses STL techniques to achieve both

generality and simplicity

Version 2.0 - May 17, 2012

Regular Expression Refresher:
Overview

[Aregularexpression is a pattern
= Represented by a string
= Extremely compact, potentially inscrutable
= This pattern is applied to a target string
= Match: Does the pattern describe the entire target?
= Search: Does the pattern describe part of the target?

= Replace: Transform substrings (described by the pattern) of
the target

8 The transformation is done according to another pattern
s Represented by a format string
o Format grammar is simpler than regular expression grammar

@ Applying a regular expression is also called "matching"

Version 2.0 - May 17, 2012

What Grammars Can regex Use?

ECMAScript — JavaScript's standard, based on Perl
= The default, and the most powerful

= Supports more features than any other grammar

» | acks no features (except awk's octal escapes)

basic — POSIX Basic Regular Expressions
extended — POSIX Extended Regular Expressions
awk — POSIX awk utility

grep — POSIX grep utility

egrep—POSIX grep -E utility

Version 2.0 - May 17, 2012

Regular Expression Refresher:
Capture Groups

A regular expression can contain capture groups

Capture groups...

= ... are sometimes called subexpressions

= ... identify specific parts of the regular expression for
later reference
o While matching: Backreferences

8 After matching: Drill down into match results, asking which
capture groups matched where
o While replacing a substring S with a replacement R
* R can be a fixed string, or...
* R can be built from parts of S matched by capture groups
* Those parts of S can be reordered and duplicated

Version 2.0 - May 17, 2012

Regular Expression Refresher:
Precedence

E ab+c |'d'matches abc, abbc, abbbcg, ..., and d
= Elements (for example: b) are the building blocks
= Quantifiers (for example: b+) bind most tightly
» Concatenation (for example: ab+c) binds next
= Alternation (for example: ab+c | d) binds most weakly

= Parentheses create elements for grouping
= a|b+ matches a, b, bb, bbb, etc.
= (a|b)+ matches a, b, aa, ab, ba, bb, aaa, etc.

Version 2.0 - May 17, 2012

Regular Expression Refresher:
Elements (Ordinary, Wildcard, Anchor)

= Anordinary character matches itself
= Case sensitive matching by default
m Specialcharacters:o \ * + ?> | ~$ () [1{}

B Awildcard . matches any single character except
newline

= The anchors * and $ match empty substrings at the
beginning and end of the target string
= ~cat matches a substring of catch but notof kittycat
= cat$ matches a substring of kittycat but not of catch

Version 2.0 - May 17, 2012

Regular Expression Refresher:
Elements (Bracket Expressions)

B A bracket expression matches any single character
in a specific set, or not in a specific set
= [ch]at matches cat and hat
m [2-4]7 matches 27,37, and 47
= [2b]at matches aat, cat, 3at, etc. but not bat

Bracket expressions can contain character classes
m [[:xdigit:]] matchesany hexadecimal digit
m [~ :xdigit:]] matchesany non-hexit

Version 2.0 - May 17, 2012

Regular Expression Refresher:
Elements (Escapes)

\ does many things:
» Special characterescapes: \. \\ * \+etc.
Backreferences: \1 \2 \3 etc.
File format escapes: \f \n \r \t \v
DSW escapes: \d \s \w \D \S \W
s \d matches digit characters
s \s matches whitespace characters

8 \w matches word characters (alphanumeric and underscore)
o \D matches non-digit characters, etc.

Word boundaries: \b \B

s \b matches the empty substrings at the beginning and end of a
word, \B is the opposite

Hex escapes, Unicode escapes, control escapes

Version 2.0 - May 17, 2012

We Put A Backslash In Your Backslash
S0 You Can Escape While You Escape

B Backslashes are also special to C++

B String literals must contain double backslashes in
order to present single backslashes to regex

& To match a filename: "meow\ \ . txt"
ERANd “directory\\\\meow\\.txt"

B C++11 raw string literals solve this problem:
= R*(C:\\Temp\\meow\.txt)"

Regular Expression Refresher:
Elements (Groups, Asserts)

(whatever) overrides precedence and creates a
capture group

(?:whatever) overrides precedence only (hence,
“noncapture group")

= Usually, creating a capture group is okay even if you're
not interested in it

For people who want to be really clever:
= Positive asserts: (?=whatever)
= Negative asserts: (? !lwhatever)

Version 2.0 - May 17, 2012

ORENCEENORNG © (@ @ [@ (1§

Regular Expression Refresher:
Quantifiers

“'means "0 or more"; ab*c matches ac, abc, abbc, etc.
+ means "1 or more"; ab+c matches abc, abbc, etc.

? means "o or 1"; ab?c matches only ac and abc

{3} means "exactly 3"

{3, } means "3 or more"

13,5} means "3 to 5 inclusive"

*isan abbreviation for {9, }

+ is an abbreviation for {1, }

? is an abbreviation for {0,1}

Version 2.0 - May 17, 2012

Regular Expression Refresher:
Non-Greedy Quantifiers

“Greed is good" — Gordon Gekko

Quantifiers are greedy by default, matching as many
characters as they can

When simply matching, this doesn't matter
.. except when it's bad

When matching and examining submatches, or when
searching, or when replacing, you may want quantifiers
to match as few characters as they can

Append ? for non-greedy matching
= .* matches
= .*? matches yz

Version 2.0 - May 17, 2012

What Does regex Work With?

= As with STL algorithms, iterators are used to
decouple regex from the data that it manipulates
m const char *andstring::const_iterator
= const wchar t *andwstring::const _iterator

B The most general overloads take [first, last)
for maximum generality

@ Convenience overloads are provided for:
m std::string
» std: :wstring
= Null-terminated const char *
= Null-terminated const wchar_t *

Version 2.0 - May 17, 2012

regex Types

B basic regex:A finite state machine constructed
from a regular expression pattern
= More than meets the eye: A complex data structure that

looks like it stores a plain old string

- match_results: Arepresentation of a substring
that matches a regular expression, including which
capture groups match where

B sub_match: An iterator pair representing a
substring that matches an individual capture group

Version 2.0 - May 17, 2012

regex Algorithms

& regex match() and regex_search()
= Match: Does a pattern describe a string in its entirety?
o |f so, which capture groups matched where?
m Search: Does a pattern describe some part of a string?
8 |f so, where is the first substring described by the pattern?
5 And, which capture groups matched where?
B regex replace()

= Replace: Transform all occurrences of a pattern in a string
according to a given format

o Optional: Transform just the first occurrence
o Optional: Remove the non-transformed parts of the string

Version 2.0 - May 17, 2012

regex Iterators

E regex_iterator
= |terate through all occurrences of a pattern in a string
m 1ist<T>::iterator —node traversal in iterator form
= regex_iterator-regex_search() initerator form
B regex token_iterator

= |terate through the capture groups of all occurrences of a
pattern in a string
o Filter down to one capture group of interest
o Filter down to several capture groups of interest
o Field splitting: iterate through what doesn‘t match
= Extremely powerful for parsing

Version 2.0 - May 17, 2012

regex Typedefs: Because Typing
Strinhg: :const _iterator Isn't Fun

Typedef True Name

string basic_string<char>

regex basic_regex<char>

cmatch match_results<const char *>

smatch match_results<string::const_iterator>

csub_match sub_match<const char *>

ssub_match sub_match<string::const_iterator>

cregex_iterator regex_iterator<const char *>

sregex_iterator regex_iterator<string::const_iterator>

cregex_token_iterator regex_token_iterator<const char *>

sregex_token_iterator | regex _token_iterator<string::const_iterator>

Version 2.0 - May 17, 2012

regex_match():
Simple Matching

const regex r([1-9]1\\d*x[1-9]\\d*");
for (string s; getline(cin, s);) {
cout << (regex_match(s, r) ? "Yes" : "No") << endl;

}

= Prints:
2X4

Yes
2560x1600
Yes
007x006
\[o]

a5x5b

No

Version 2.0 - May 17, 2012

regex's Constructor Is explicit

= Writing this:
regex_match(s,)

B Triggers 6 compiler errors, starting with:

error C2784: 'bool std::regex_match(
const std::basic string< Elem, StTraits, StAlloc> &,
const std::basic_regex<_Elem, RxTraits> &,
std::regex_constants::match_flag type)’
: could not deduce template argument for
‘const std::basic regex< Elem, RxTraits> &' from
‘const char [18]"

B regex's constructoris explicit because it can be
expensive

Version 2.0 - May 17, 2012

regex_match():
Using match_results

constregex P ([1-9]\\d*)x([1-9]\\d*)");
for (string s; getline(cin, s);) {
smatch m;
if (regex_match(s, m, r)) {
cout << m[1] << " by " << m[2] << " is "
<< stoi(m[1]) * stoi(m[2]) << " pixels" << endl;

}

= Prints:
2560x1600
2560 by 1600 is 4096000 pixels

Version 2.0 - May 17, 2012

regex_search():
AVariant Of regex_match()

const regex r("//");

for (string s; getline(cin, s);) {
smatch m;
if (regex_search(s, m, r)) {

cout << "Comment: [" << m.suffix() << "]" << endl;

}

¥

= Prints:

Nothing here.

++i; // Silly comment.

Comment: [Silly comment.]

--i; // Nested // comment.

Comment: [Nested // comment.]

Version 2.0 - May 17, 2012

Format String Refresher

E Example:
s Regex: ([A-Z]+)-([0-9]+)
= String: 2161-NCC-1701-D
= Escape sequence — Replaced by:
m $1 —What matches the 15t capture group (e.g. NCC)
= $2 —What matches the 2" capture group (e.g. 1701)
= $&—What matches the whole regex (e.g. NCC-1701)
= $° —What appears before the whole regex (e.g. 2161-)
= $' —What appears after the whole regex (e.g. -D)

= $5-%

Version 2.0 - May 17, 2012

regex_replace()

const regex P (\\w+) (\\w+\\.?)? (\\w+)");

for (string s; getline(cin,

cout << "==>
<< regex_replace(s,

}

= Prints:

Stephan T. Lavavej

==> Lavavej, Stephan T.
Stephan Thomas Lavavej

==> Lavavej, Stephan Thomas
Stephan Lavavej

==> Lavavej, Stephan

s);) 1

r, "$3, $1$2") << endl;

Version 2.0 - May 17, 2012

sub_match

= Abbreviated class definition (omitting some contents):
template <typename BidiIt> class sub_match
: public pair<BidiIt, BidiIt> {

public:

typedef typename iterator_traits<BidiIt>::value_type value_type;

typedef typename iterator_traits<BidiIt>::difference_type difference_type;

bool matched;

difference type length() const;

basic_string<value type> str() const;

}s

B csub_matchand ssub_match converttostd: :string

Version 2.0 - May 17, 2012

match_results:
A Container Of sub_matches

= Highly abbreviated class definition:
template <typename BidiIt> class match_results {
public:
size t size() const;
bool empty() const;
const sub_match<BidiIt>& operator[](size_t n) const;
const sub_match<BidiIt>& prefix() const;
const sub_match<BidiIt>& suffix() const;
string type format(const string type& fmt,
regex_constants::match_flag type flags =
regex_constants::format_default) const;
s
B You justinspect match_results; only regex_match()
and regex_search() can modify match_results

Version 2.0 - May 17, 2012

match results Member Functions

= Ifregex _match/search() returns false:
= m.empty() == trueandm.size() ==
= DO NOT INSPECT any other part of m
=E Otherwise, m.empty() == falseand:
m m.size() isa+the # of capture groups in the regex
m[@] is the entire match
m[1] is the 15t sub_match, m[2] is the 2", etc.
m.prefix() precedes the match, m.suffix() follows
m.format(fmt) acts like regex_replace()

Version 2.0 - May 17, 2012

Pitfall: Stepping Through A String
With regex_search()

use regex_search() to find successive
occurrences of a regex in a string

Ch. 19 of Pete Becker's TR1 book lists the problems:
= | ost Anchors
= | ost Word Boundaries

Empty Matches

use regex_iterator instead
Robust: Correctly handles all regexes
Simple: Even easier than naively using regex_search()
Efficient: No additional overhead

Version 2.0 - May 17, 2012

regex_iterator:
Iterate Through match_results (1/2)

const regex r("\\w*day");

string s;

getline(cin, s);

for (sregex_iterator i(s.begin(), s.end(), r), end;
i l=end; ++i) {
cout << (*i)[@] << endl;

¥

B regex_iterator's default ctor creates an end-of-
sequence iterator

= |Like istream iterator
= Unlike vector<T>::iterator

use a named regex, a temporary

Version 2.0 - May 17, 2012

regex_iterator:
iterate Through match_results (2/2)

= Prints:

Hate Mondays, love Tuesday; every day should be Caturday
Monday

Tuesday
day
Caturday

E sregex_iterator::operator*() returnsa
const smatch&
= The sregex_iterator contains the smatch

= Copy the smatch if you need to inspect it after
incrementing the sregex_iterator (unusual)

B sregex_iterator::operator->() alsoworks

Version 2.0 - May 17, 2012

regex token_ iterator:
Iterate Through sub_match

= Justlike regex_iterator, except for:
= Different constructor arguments

= sregex_token _iterator::operator*() returns
const ssub_match&(operator->() is also different)

You pick capture groups of interest (one or many)
= Use them to construct a regex_token _iterator
= They will be cyclically presented to you

regex_token_iterator adapts regex_iterator
= An iterator adaptor adaptor!

Version 2.0 - May 17, 2012

regex_token_ iterator:
Constructors

= Five ways to specify capture groups:

regex_token_ iterator(BidiIt a, BidiIt b,
const regex_type& r, XYZ,
regex_constants::match_flag type m =
regex_constants::match_default);

= Where XYZ is one of:
= int submatch = ©
= const vector<int>& submatches
= initializer_list<int> submatches
= const int (&submatches)[N]

Version 2.0 - May 17, 2012

regex_ token_ iterator:
ot" Capture Group

B Rewriting the regex_iterator example:

const regex r("\\w*day");

string s;

getline(cin, s);

for (i(s.begin(), s.end(), r), end;
i l= end; ++i) {
cout <« << endl;

}
@ *iinstead of (*1)[0]

Version 2.0 - May 17, 2012

regex_token_ iterator:
Field Splitting (1/2)

Triggered by asking for capture group -1
lterates through what doesn't match the regex

Infinitely better than strtok (), whichis
dangerous, limited, and inconvenient

If the string ends with a field splitter:

= Every token ends with a field splitter

If the string doesn't end with a field splitter:

= Every token ends with a field splitter or the string end

This is exactly how newlines behave, although it
can be surprising

Version 2.0 - May 17, 2012

regex_ token_ iterator:
Field Splitting (2/2)

const regex r("A\\s+|\\s*,\\s*|\\s+$");
const string s(* ape,bat, cat ,dog , emu, fox hound ");
for (sregex token_iterator i(
s.begin(), s.end(), r,), end; i != end; ++i) {
cout << i->length() << " (" << *i << ")" << endl;
J
@ Prints:
e ()
3 (ape)
(bat)
(cat)
(dog)
(emu)
(fox hound)

Version 2.0 - May 17, 2012

Questions?

= My E-mail address:

m For more information, see:
= The current Working Paper:

= The C++ Standard Library Extensions: A Tutorial And
Reference by Pete Becker

Version 2.0 - May 17, 2012

