Moving Forward to C++| |

Howard Hinnant
May 15,2012

Wednesday, May 16, 12

Outline

The rvalue reference
Move Semantics
Factory Functions
More rvalue ref rules

“Perfect” forwarding

Wednesday, May 16, 12

Outline

The rvalue reference
Move Semantics
Factory Functions
More rvalue ref rules

“Perfect” forwarding

Motivation for Move

® |In 2006, | wrote a benchmark to show off
move semantics.

® |t manipulated the unlikely data structure
vector<set<int>>:

® Return it from factory functions.

® Manipulate it with algorithms.

Wednesday, May 16, 12

Motivation for Move

construction stable sort
destroy

Motivation for Move

construction stable sort
destroy

clang/libc++/C++03 clang/libc++/C++1 |

Wednesday, May 16, 12

Motivation for Move

construction stable sort
destroy

clang/libc++/C++03 clang/libc++/C++1 |

Wednesday, May 16, 12

Motivation for Move

construction stable sort
destroy

clang/libc++/C++03 clang/libc++/C++1 |

Wednesday, May 16, 12

Motivation for Move

construction stable sort
destroy

clang/libc++/C++03 clang/libc++/C++1 |

Wednesday, May 16, 12

Motivation for Move

construction stable sort
destroy

clang/libc++/C++03 clang/libc++/C++1 |

Wednesday, May 16, 12

Motivation for Move

construction stable sort
destroy

clang/libc++/C++03 clang/libc++/C++1 |

Wednesday, May 16, 12

Motivation for Move

construction stable sort
destroy

clang/libc++/C++03 clang/libc++/C++1 |

Wednesday, May 16, 12

Motivation for Move

Motivation for Move

® With move semantics, vector<set<int>>
does not have to be an unlikely data
structure.

Wednesday, May 16, 12

Motivation for Move

® With move semantics, vector<set<int>>

does not have to be an unlikely data
structure.

® Containers and algorithms can move
around set<int> almost as cheaply as
moving around an int.

Wednesday, May 16, 12

Motivation for Move

® With move semantics, vector<set<int>>

does not have to be an unlikely data
structure.

® Containers and algorithms can move
around set<int> almost as cheaply as
moving around an int.

® And you can install move semantics in your
“heavy” data structures.

Wednesday, May 16, 12

Rvalue reference syntax

A&

Rvalue reference syntax

A&

® |nh C++03 we have the reference.

Rvalue reference syntax

A&

Rvalue reference syntax

A&

® |[n C++| 1| we renamed “reference”
to “lvalue reference.’

Rvalue reference syntax

A&

® |[n C++| 1| we renamed “reference”
to “lvalue reference.’

® And we introduce a new kind of
reference called “rvalue reference.’

Wednesday, May 16, 12

Expressions

expression

e

lvalue rvalue

Expressions

expression

lvalue rvalue

static_cast<A&>(a) static_cast<A>(a)

® |n C++98/03 every expression is Ivalue or rvalue.

® Expressions never have reference type.

Wednesday, May 16, 12

Expressions

expression

e

lvalue prvalue

Expressions

expression

lvalue prvalue

® |n C++|| we renamed rvalue to prvalue.

Wednesday, May 16, 12

Expressions

expression

lvalue prvalue

® |n C++|| we renamed rvalue to prvalue.

Wednesday, May 16, 12

Expressions

expression

lvalue xvalue prvalue
static_cast<A&>(a)

® |n C++|| we renamed rvalue to prvalue.

® And we added a new value category: xvalue.

Wednesday, May 16, 12

Expressions

expression

glvalue

e s

lvalue xvalue prvalue

Expressions

expression

glvalue

e s

lvalue xvalue prvalue

® A glvalue has a distinct address in memory.

® |.e.it has an identity.

Expressions

expression
2 RS

glvalue rvalue

lvalue xvalue prvalue

Expressions

expression
2 RS

glvalue rvalue

lvalue xvalue prvalue

® Only rvalues will bind to an rvalue reference.

® |values will not bind to an rvalue reference.

Wednesday, May 16, 12

Binding

void f(A& i, A j, A&& Kk);

Binding

Binds to lvalues

o=

void f(A& i, A j, A&& Kk);

Wednesday, May 16, 12

Binding

Binds to lvalues

-

void f(A& i, A j, A&& Kk);

/

Special case: Will
bind to rvalue if
const A&

Wednesday, May 16, 12

Binding

Binds to lvalues
and rvalues

Binds to lvalues

-

void f(A& i, A j, A&& Kk);

/

Special case: Will
bind to rvalue if
const A&

Wednesday, May 16, 12

Binding

Binds to lvalues
and rvalues

Binds to lvalues

-

void f(A& i, A j, A&& Kk);

A~

Special case: Will lvalues require copy
bind to rvalue if rvalues require move

const A& (the move can be elided)

Wednesday, May 16, 12

Binding

Binds to lvalues
and rvalues

Binds to lvalues Binds to rvalues

e -~

void f(A& i, A j, A& K): prvalues
and

/ [xvalues

Special case: Will lvalues require copy
bind to rvalue if rvalues require move

const A& (the move can be elided)

Wednesday, May 16, 12

Types & Expressions

void f(A& i, A j, A& k)
{

Types & Expressions

void f(A& i, A j, A& k)
{

® iis declared as type A&.

Types & Expressions

void f(A& i, A j, A& k)

{
i: // lvalue A

® iis declared as type A&.

® The expression i has type A and is an lvalue.

Types & Expressions

void f(A& i, A j, A& k)

{
i: // lvalue A

® jis declared as type A.

Types & Expressions

void f(A& i, A j, A& k)

{
i: // lvalue A

j; // lvalue A

® jis declared as type A.

® The expression j has type A and is an Ivalue.

Types & Expressions

void f(A& i, A j, A& k)

{
i: // lvalue A

j; // lvalue A

® k is declared as type A&&.

Types & Expressions

void f(A& i, A j, A& k)

{
i: // lvalue A

j; // lvalue A
k; // lvalue A

® k is declared as type A&&.

® The expression k has type A and is an Ivalue.

Types & Expressions

void f(A& i, A j, A& k)
{

Types & Expressions

void g(A&); // #1
void g(A&&); // #2

void f(A& i, A j, A& k)
{

Types & Expressions

void g(A&); // #1
void g(A&&); // #2

void f(A& i, A j, A&& k)
) g(i); // calls #1

Types & Expressions

void g(A&); // #1
void g(A&&); // #2

void f(A& i, A j, A& k)

) g(i); // calls #1
g(j); // calls #1

Types & Expressions

void g(A&); // #1
void g(A&&); // #2

void f(A& i, A j, A& k)

) g(i); // calls #1
g(j); // calls #1
g(k); // calls #1

* The expression k is an lvalue A

Types & Expressions

void g(A&); // #1
void g(A&&); // #2

void f(A& i, A j, A& k)

g(static_cast<A&&>(1i)); // calls #2
g(static_cast<A&&>(j)); // calls #2
g(static_cast<A&&>(k)); // calls #2

* An lvalue expression can be cast
to an rvalue (xvalue) expression

Types & Expressions

void g(A&); // #1
void g(A&&); // #2

void f(A& i, A j, A& k)

{

g(std::move(i)); // calls #2
g(std::move(j)); // calls #2
g(std::move(k)); // calls #2

* Use std::move to perform the
cast for better readability.

Wednesday, May 16, 12

Outline

The rvalue reference
Move Semantics
Factory Functions
More rvalue ref rules

“Perfect” forwarding

Wednesday, May 16, 12

Outline

The rvalue reference
Move Semantics
Factory Functions
More rvalue ref rules

“Perfect” forwarding

Observation

void f(A& i, A j, A&& k)
{
// 1 1s not a unique reference
// j 1s a unique reference
// k 1s a reference to xvalue or prvalue

}

Wednesday, May 16, 12

Observation

void f(A& i, A j, A&& k)
{
// 1 1s not a unique reference
// j 1s a unique reference
// k 1s a reference to xvalue or prvalue

}

® f() can do anything it wants to j, as long as the object
remains destructible.

Wednesday, May 16, 12

Observation

void f(A& i, A j, A&& k)
{
// 1 1s not a unique reference
// j 1s a unique reference
// k 1s a reference to xvalue or prvalue

}

® f() can do anything it wants to j, as long as the object
remains destructible.

® f() can do anything it wants to k, as long as k
references a prvalue.

Wednesday, May 16, 12

Observation

void f(A& i, A j, A&& k)
{
// 1 1s not a unique reference
// j 1s a unique reference
// k 1s a reference to xvalue or prvalue

}

® f() can do anything it wants to j, as long as the object
remains destructible.

® f() can do anything it wants to k, as long as k
references a prvalue.

® Convention: Do not cast an lvalue to an xvalue unless
you want that object to be treated as a prvalue.

Wednesday, May 16, 12

The move constructor

class A

{

intx data_; // heap allocated
public:
A(const A& a); // copy constructor

The move constructor

class A

{

intx data_; // heap allocated
public:

A(const A& a); // copy constructor

b

® copy constructor binds to an
lvalue and copies resources.

Wednesday, May 16, 12

The move constructor

class A
{

intx data_; // heap allocated
public:

A(const A& a); // copy constructor

A(A&& a) noexcept // move constructor
: data_(a.data_)
{ a.data_ = nullptr;}

b

® copy constructor binds to an
lvalue and copies resources.

® move constructor binds to a
rvalue and pilfers resources.

Wednesday, May 16, 12

The move constructor

A make A();

A al;
A a2 = al; // Calls copy ctor

The move constructor

A make A();

A al;

A a2 = al; // Calls copy ctor

A a3 // Calls (or elides)
// move ctor

The move constructor

make A();

al; // Calls copy ctor

make A(); // Calls (or elides)
// move ctor

std::move(al); // Calls move ctor

The move constructor

make A();

al;
a2 = al; // Calls copy ctor

a3 = make_A(); // Calls (or elides)
// move ctor

ad = std::move(al); // Calls move ctor

“Copies” from rvalues are made with the
move constructor, which does nothing but
trade pointers. Fast!

Wednesday, May 16, 12

The move constructor

The move constructor

® |f a class does not have a move constructor,
its copy constructor will be used to copy
from rvalues (just as in C++98/03).

The move constructor

If a class does not have a move constructor,
its copy constructor will be used to copy
from rvalues (just as in C++98/03).

Scalars move the same as they copy.

The move constructor

The move constructor

struct A

{
A(const A& a);

A(A&S) = default;
b

® Copy and move constructors can be
explicitly defaulted.

® The default copies/moves each base and

data member (unless it is defined as
deleted).

The move constructor

The move constructor

struct member

{

member(const member&);

b
struct A
1

member m_;
A(A&&) = default; // deleted

.

® A defaulted move constructor is defined as deleted if:

® there is a base or member with no move
constructor and it is not trivially copyable.

Wednesday, May 16, 12

The move constructor

struct member

{

member(const member&) = default;

b
struct A
1

member m_;
A(A&&) = default;

.

® A defaulted move constructor is defined as deleted if:

® there is a base or member with no move
constructor and it is not trivially copyable.

Wednesday, May 16, 12

The move constructor

struct member

{

member(const member&);
member (member&&) ;

b

struct A

1

member m_;
A(A&S) = default;

.

® A defaulted move constructor is defined as deleted if:

® there is a base or member with no move
constructor and it is not trivially copyable.

Wednesday, May 16, 12

The move constructor

struct member

{

member(const member&);

b
struct A
1

member m_;
" A(A&L) = default;

The move constructor

struct member

{

member(const member&);

b
struct A
1

member m_;
" A(A&L) = default;

® CWAG issue 1402 (ready) changes the rules such that
the defaulted move members will not be implicitly
deleted, but instead copy the bases and members.

The move constructor

The move constructor

static_assert

(
std::1s_move _constructible<A>::value,
"A should be move constructible"

) ;

® You can always test at compile time if a
complete type is move constructible.

Wednesday, May 16, 12

The move constructor

static_assert

(

std::1s_move _constructible<A>::value,
"A should be move constructible"

) ;

® You can always test at compile time if a
complete type is move constructible.

® This tests whether or not A is constructible
from an rvalue A, not if A has a move

constructor.
® But a type with a deleted move constructor

iSs hever move constructible.

Wednesday, May 16, 12

The move constructor

The move constructor

struct A

{
A(const A& a) delete;

A(A&S) default:
b

® Copy and move constructors can be explicitly
deleted.

The move constructor

struct A

{
A(const A& a) default;

A(A&S) delete;
b

® Copy and move constructors can be explicitly
deleted.

® A deleted move constructor will prohibit copying
from rvalues (rarely a good idea). Normally omit
rather than delete a move constructor.

The move constructor

struct A

{
A(const A& a) = default;

b

® Copy and move constructors can be explicitly
deleted.

® A deleted move constructor will prohibit copying
from rvalues (rarely a good idea). Normally omit
rather than delete a move constructor.

The move constructor

The move constructor

struct A

{
// A(const A&) = delete;
// A& operator=(const A&) = delete;
A(A&S) ;

%

® A user-declared move constructor (defaulted
or not) will implicitly create a deleted copy
constructor and copy assignment.

Implicit Special Members

class A
{ noexcept is extension

std::string s_;
public: /
// A() noexcept = default;
// A(const A&) = default;
// A& operator=(const A&) = default;
// A(A&&) noexcept = default;
// A& operator=(A&&) noexcept = default;
// ~A() noexcept = default;

b

® Comments indicate compiler supplied definitions.

Wednesday, May 16, 12

Implicit Special Members

class A
{
std::string s_;
public:
A();
// A(const A&) = default;
// A& operator=(const A&) = default;
// A(A&&) noexcept = default;
// A& operator=(A&&) noexcept = default;
// ~A() noexcept = default;

b

® Comments indicate compiler supplied definitions.

Wednesday, May 16, 12

Implicit Special Members

class A

{

std::string s_;
public:

deprecated
A(const A&); //////

// A& operator=(const A&) = default;

// ~A() noexcept = default;
b

® Comments indicate compiler supplied definitions.

Implicit Special Members

class A
{ noexcept is extension

std::string s_;
public: / deprecated

// A() noexcept = default;
// A(const A&) = default;

A& operator=(const A&) = default;

// ~A() noexcept = default;
b

® Comments indicate compiler supplied definitions.

Wednesday, May 16, 12

Implicit Special Members

class A]]
{ noexcept is extension

Ssidiistcing s se T—
// A() noexcept = dEfa“1t517/
// A(const A&) = default;

// A& operator=(const A&) = default;

~A();
e

® Comments indicate compiler supplied definitions.

Implicit Special Members

class A

{
std::string s_;
public:

// A(const A&) = delete;
// A& operator=(const A&) = delete;
A(A&&L) ;

// ~A() noexcept = default;
b

® Comments indicate compiler supplied definitions.

Implicit Special Members

class A
{ noexcept is extension

std::string s_;
public: /

// A() noexcept = default;
// A(const A&) = delete;
// A& operator=(const A&) = delete;

A& operator=(A&&);
// ~A() noexcept = default;

b

® Comments indicate compiler supplied definitions.

Wednesday, May 16, 12

Adyvice

® Put these (or other appropriate) tests right
into your release code:

struct A

{
std::string s_;
std::vector<int> v_;

Wednesday, May 16, 12

Adyvice

® Put these (or other appropriate) tests right
into your release code:

struct A
{

std::string s_;
std::vector<int> v_;

s

// Howard says put these tests in!
static_assert(std::is_nothrow_default_constructible<A>::value, "");
static_assert(std::is_copy_constructible<A>::value, "");
static_assert(std::is_copy_assignable<A>::value, "");
static_assert(std::is_nothrow_move_constructible<A>::value, "");
static_assert(std::is_nothrow_move_assignable<A>::value, "");
static_assert(std::is_nothrow_destructible<A>::value, "");

Wednesday, May 16, 12

Adyvice

® Put these (or other appropriate) tests right
into your release code:

struct A
{

std::string s_;

std::vector<int> v_;

A(const A&) = default;
b

// Howard says put these tests in!
static_assert(std::is_nothrow_default_constructible<A>::value, "");
static_assert(std::is_copy_constructible<A>::value, "");
static_assert(std::is_copy_assignable<A>::value, "");
static_assert(std::is_nothrow_move_constructible<A>::value, "");
static_assert(std::is_nothrow_move_assignable<A>::value, "");
static_assert(std::is_nothrow_destructible<A>::value, "");

Wednesday, May 16, 12

Adyvice

® Put these (or other appropriate) tests right
into your release code:

struct A
{

std::string s_;
std::vector<int> v_;

A(const A&) = default;
s

// Howard says put these tests in! Or else!!!
static_assert(std::is_copy_constructible<A>::value, "");

static_assert(std::is_copy_assignable<A>::value, "");

static_assert(std::is_nothrow_destructible<A>::value, "");

Wednesday, May 16, 12

The move assighment
operator

The move assighment
operator

® Everything that’s been said about
the move constructor applies to
the move assignment operator.

The move assighment
operator

class A
{

intx data_; // heap allocated
public:

A& operator=(const A& a); // copy

The move assighment
operator

class A

{

intx data_; // heap allocated
public:

A& operator=(const A& a); // copy

}; ® copy assignment binds to Ivalue rhs and copies
resources.

The move assighment
operator

class A

{

intx data_; // heap allocated
public:

A& operator=(const A& a); // copy

A& operator=(A&& a) noexcept // move
{

std::swap(data_, a.data_);
return xthis;

I

}; ® copy assignment binds to lvalue rhs and copies
resources.
® move assighment binds to rvalue rhs and does
whatever is fastest to assume value of rhs.

Wednesday, May 16, 12

The move assighment
operator

The move assighment
operator

class A

{

fstream f_;
public:

A& operator=(A&& a) noexcept
{

f_ = std::move(a.f_);
return xthis;

}

® |f your type holds std::lib components,
move assighing those data members will
generally do the right thing.

-

The move assighment
operator

class A

{

fstream f_;
public:
A& operator=(A&& a) = default;

-

® |f all you need to do is move assign
bases and members, consider doing
it with “= default”.

The move assighment
operator

class A

{

fstream f_;
public:

};
® Or doing it implicitly.

The move assighment
operator

template <class T>
class A {
Tx data_; // heap allocated
public:
A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

b

® Does the move assighment operator
need to check for self-assighment!?

Wednesday, May 16, 12

The move assighment
operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

The move assighment
operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

}

® Convention: Do not cast an lvalue to an xvalue unless
you want that object to be treated as a prvalue.

Wednesday, May 16, 12

The move assighment
operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

}

® Convention: Do not cast an lvalue to an xvalue unless
you want that object to be treated as a prvalue.

® |f‘a’ refers to a prvalue, then it is not possible for ‘this’
and ‘a’ to refer to the same object.

Wednesday, May 16, 12

The move assighment
operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

The move assighment
operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

¥
a = std::move(a):

® However if ‘a’ refers to an xvalue, then it is possible
for ‘this’ and ‘a’ to refer to the same object.

Wednesday, May 16, 12

The move assighment
operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

¥
a = std::move(a):

® However if ‘a’ refers to an xvalue, then it is possible
for ‘this’ and ‘a’ to refer to the same object.

® But you've arguably broken convention.

Wednesday, May 16, 12

The move assighment

operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

The move assighment

operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

template <class T>
void swap(T& x, T& y) {
T tmp(std::move(x));

® Self-swap is one x = std::move(y);

place where this can y y = std::move(tmp);
happen.

::swap(a, a);

The move assighment

operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

template <class T>

void swap(T& x, T& y) {
T tmp(std::move(x));
X = std::move(y);
y = std::move(tmp);

s

std::swap(a, a);

Wednesday, May 16, 12

The move assighment

operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

I3 template <class T>
void swap(T& x, T& y) {

® However in this T tmp(std::move(x));

X = std::move(y);

case, the self-move
y = std::move(tmp);

assignment happens ,
only on a moved-
from value. std::swap(a, a);

Wednesday, May 16, 12

The move assighment

operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

template <class T>

void swap(T& x, T& y) {
T tmp(std::move(x));
X = std::move(y);
y = std::move(tmp);

s

std::swap(a, a);

Wednesday, May 16, 12

The move assighment

operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;
template <class T>
void swap(T& x, T& y) {

® Self-move assignment ;I(- tmgéztdmocg\(’% : i

from a moved-from y = std::move(tmp);
value is most often
naturally safe.

std::swap(a, a);

Wednesday, May 16, 12

The move assighment
operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

The move assighment

operator

A& operator=(A&& a) noexcept {
delete data_;
data_ = a.data_;
a.data_ = nullptr;
return xthis;

® |ndeed, in all permutation rearrangement algorithms
(those that do not “remove” elements), the target of
a move assignment is always in a “moved-from” state.

Wednesday, May 16, 12

The move assighment
operator

The move assighment
operator

® | treat self-move assignment and self-swap as a
performance bug in my code.

The move assighment
operator

® | treat self-move assignment and self-swap as a
performance bug in my code.

® My move assighment operators are “‘self-safe”
only when in a moved-from state.

The move assighment
operator

® | treat self-move assignment and self-swap as a
performance bug in my code.

® My move assighment operators are “‘self-safe”
only when in a moved-from state.

® Feel free to check for self-move assignment in
your code.

The move assighment
operator

® | treat self-move assignment and self-swap as a
performance bug in my code.

® My move assighment operators are “‘self-safe”
only when in a moved-from state.

® Feel free to check for self-move assignment in
your code.

® Either with an if - to ignore the bug.

The move assighment
operator

® | treat self-move assignment and self-swap as a
performance bug in my code.

® My move assighment operators are “‘self-safe”
only when in a moved-from state.

® Feel free to check for self-move assignment in
your code.

® Either with an if - to ignore the bug.

® Or with an assert - to catch the bug.

Assighment boo boo’s

class A

{

std::vector<int> v_;
std::string s_;
public:
A& operator=(A a) {
swap(a);
return xthis;

}; ® |[n C++98/03 it became popular to define
assignment using a copy/swap pattern.

® This is very good if you need strong
exception safety.

Assighment boo boo’s

class A
{
std::vector<int> v_;
std::string s_;
public:
A& operator=(A a) {
swap(a);
return xthis;

Wednesday, May 16, 12

Assighment boo boo’s

class A

{

std::vector<int> v_;
std::string s_;
public:
A& operator=(A a) {
swap(a);
return xthis;

}; ® |t is very efficient when
assigning from rvalues.

Wednesday, May 16, 12

Assighment boo boo’s

class A

{

std::vector<int> v_;
std::string s_;
public:
A& operator=(A a) {
swap(a);
return xthis;

}; ® |t is very efficient when
assigning from rvalues.

® |t is not so efficient when
assigning from lvalues.

Wednesday, May 16, 12

Assighment boo boo’s

class A
{
std::vector<int> v_;
std::string s_;
public:
A& operator=(A a) {
swap(a);
return xthis;

Wednesday, May 16, 12

Assighment boo boo’s

class A

{

std::vector<int> v_;
std::string s_;
public:
A& operator=(A a) {
swap(a);
return xthis;

}; ® Strong exception safety is good, but it
is not free.

Wednesday, May 16, 12

