
Moving Forward to C++11

Howard Hinnant
May 15, 2012

Wednesday, May 16, 12

• The rvalue reference

• Move Semantics

• Factory Functions

• More rvalue ref rules

• “Perfect” forwarding

Outline

Wednesday, May 16, 12

• The rvalue reference

• Move Semantics

• Factory Functions

• More rvalue ref rules

• “Perfect” forwarding

Outline

Wednesday, May 16, 12

Motivation for Move

• In 2006, I wrote a benchmark to show off
move semantics.

• It manipulated the unlikely data structure
vector<set<int>>:

• Return it from factory functions.

• Manipulate it with algorithms.

Wednesday, May 16, 12

Motivation for Move
construction stable_sort
destroy

Wednesday, May 16, 12

Motivation for Move

clang/libc++/C++03 clang/libc++/C++11
0

3

6

9

12

15

18

21

24

27

construction stable_sort
destroy

Wednesday, May 16, 12

Motivation for Move

clang/libc++/C++03 clang/libc++/C++11
0

3

6

9

12

15

18

21

24

27

construction stable_sort
destroy

Wednesday, May 16, 12

Motivation for Move

clang/libc++/C++03 clang/libc++/C++11
0

3

6

9

12

15

18

21

24

27

construction stable_sort
destroy

Wednesday, May 16, 12

Motivation for Move

clang/libc++/C++03 clang/libc++/C++11
0

3

6

9

12

15

18

21

24

27

construction stable_sort
destroy

Wednesday, May 16, 12

Motivation for Move

clang/libc++/C++03 clang/libc++/C++11
0

3

6

9

12

15

18

21

24

27

construction stable_sort
destroy

Wednesday, May 16, 12

Motivation for Move

clang/libc++/C++03 clang/libc++/C++11
0

3

6

9

12

15

18

21

24

27

construction stable_sort
destroy

Wednesday, May 16, 12

Motivation for Move

clang/libc++/C++03 clang/libc++/C++11
0

3

6

9

12

15

18

21

24

27

construction stable_sort
destroy

Wednesday, May 16, 12

Motivation for Move

Wednesday, May 16, 12

Motivation for Move

• With move semantics, vector<set<int>>
does not have to be an unlikely data
structure.

Wednesday, May 16, 12

Motivation for Move

• With move semantics, vector<set<int>>
does not have to be an unlikely data
structure.

• Containers and algorithms can move
around set<int> almost as cheaply as
moving around an int.

Wednesday, May 16, 12

Motivation for Move

• With move semantics, vector<set<int>>
does not have to be an unlikely data
structure.

• Containers and algorithms can move
around set<int> almost as cheaply as
moving around an int.

• And you can install move semantics in your
“heavy” data structures.

Wednesday, May 16, 12

Rvalue reference syntax

A&

Wednesday, May 16, 12

Rvalue reference syntax

• In C++03 we have the reference.

A&

Wednesday, May 16, 12

Rvalue reference syntax

A&

Wednesday, May 16, 12

Rvalue reference syntax

• In C++11 we renamed “reference”
to “lvalue reference.”

A&

Wednesday, May 16, 12

Rvalue reference syntax

• In C++11 we renamed “reference”
to “lvalue reference.”

• And we introduce a new kind of
reference called “rvalue reference.”

A&

A&&

Wednesday, May 16, 12

rvalue

Expressions

expression

lvalue

Wednesday, May 16, 12

rvalue

Expressions

expression

lvalue

• In C++98/03 every expression is lvalue or rvalue.

static_cast<A&>(a) static_cast<A>(a)

• Expressions never have reference type.

Wednesday, May 16, 12

Expressions

expression

lvalue prvalue

Wednesday, May 16, 12

Expressions

expression

lvalue

• In C++11 we renamed rvalue to prvalue.

prvalue

Wednesday, May 16, 12

Expressions

expression

lvalue

• In C++11 we renamed rvalue to prvalue.

prvalue

Wednesday, May 16, 12

Expressions

expression

lvalue

• In C++11 we renamed rvalue to prvalue.

xvalue

• And we added a new value category: xvalue.

static_cast<A&&>(a)

prvalue

Wednesday, May 16, 12

prvalue

Expressions

expression

lvalue xvalue

glvalue

Wednesday, May 16, 12

prvalue

Expressions

expression

lvalue xvalue

glvalue

• A glvalue has a distinct address in memory.

• I.e. it has an identity.

Wednesday, May 16, 12

Expressions

prvalue

expression

lvalue xvalue

glvalue rvalue

Wednesday, May 16, 12

Expressions

prvalue

expression

lvalue xvalue

glvalue rvalue

• Only rvalues will bind to an rvalue reference.

• lvalues will not bind to an rvalue reference.

Wednesday, May 16, 12

Binding

void f(A& i, A j, A&& k);

Wednesday, May 16, 12

Binding

void f(A& i, A j, A&& k);

Binds to lvalues

Wednesday, May 16, 12

Binding

void f(A& i, A j, A&& k);

Binds to lvalues

Special case: Will
bind to rvalue if

const A&

Wednesday, May 16, 12

Binding

void f(A& i, A j, A&& k);

Binds to lvalues

Binds to lvalues
and rvalues

Special case: Will
bind to rvalue if

const A&

Wednesday, May 16, 12

Binding

void f(A& i, A j, A&& k);

Binds to lvalues

Binds to lvalues
and rvalues

Special case: Will
bind to rvalue if

const A&

lvalues require copy
rvalues require move
(the move can be elided)

Wednesday, May 16, 12

Binding

void f(A& i, A j, A&& k);

Binds to lvalues

Binds to lvalues
and rvalues

Binds to rvalues

Special case: Will
bind to rvalue if

const A&

prvalues
and

xvalues

lvalues require copy
rvalues require move
(the move can be elided)

Wednesday, May 16, 12

Types & Expressions

void f(A& i, A j, A&& k)
{

}

Wednesday, May 16, 12

Types & Expressions

• i is declared as type A&.

void f(A& i, A j, A&& k)
{

}

Wednesday, May 16, 12

Types & Expressions

• i is declared as type A&.

• The expression i has type A and is an lvalue.

void f(A& i, A j, A&& k)
{

}

i; // lvalue A

Wednesday, May 16, 12

Types & Expressions

void f(A& i, A j, A&& k)
{

}

i; // lvalue A

• j is declared as type A.

Wednesday, May 16, 12

Types & Expressions

void f(A& i, A j, A&& k)
{

}

i; // lvalue A
j; // lvalue A

• j is declared as type A.

• The expression j has type A and is an lvalue.

Wednesday, May 16, 12

Types & Expressions

void f(A& i, A j, A&& k)
{

}

i; // lvalue A
j; // lvalue A

• k is declared as type A&&.

Wednesday, May 16, 12

Types & Expressions

void f(A& i, A j, A&& k)
{

}

i; // lvalue A
j; // lvalue A
k; // lvalue A

• k is declared as type A&&.

• The expression k has type A and is an lvalue.

Wednesday, May 16, 12

Types & Expressions

void f(A& i, A j, A&& k)
{

}

Wednesday, May 16, 12

Types & Expressions

void f(A& i, A j, A&& k)
{

}

void g(A&); // #1
void g(A&&); // #2

Wednesday, May 16, 12

Types & Expressions

void f(A& i, A j, A&& k)
{

}

void g(A&); // #1
void g(A&&); // #2

g(i); // calls #1

Wednesday, May 16, 12

Types & Expressions

void f(A& i, A j, A&& k)
{

}

void g(A&); // #1
void g(A&&); // #2

g(i); // calls #1
g(j); // calls #1

Wednesday, May 16, 12

Types & Expressions

void f(A& i, A j, A&& k)
{

}

void g(A&); // #1
void g(A&&); // #2

g(i); // calls #1
g(j); // calls #1
g(k); // calls #1

• The expression k is an lvalue A

Wednesday, May 16, 12

Types & Expressions

void f(A& i, A j, A&& k)
{

}

void g(A&); // #1
void g(A&&); // #2

g(static_cast<A&&>(i)); // calls #2
g(static_cast<A&&>(j)); // calls #2
g(static_cast<A&&>(k)); // calls #2

• An lvalue expression can be cast
to an rvalue (xvalue) expression

Wednesday, May 16, 12

Types & Expressions

void f(A& i, A j, A&& k)
{

}

void g(A&); // #1
void g(A&&); // #2

g(std::move(i)); // calls #2
g(std::move(j)); // calls #2
g(std::move(k)); // calls #2

• Use std::move to perform the
cast for better readability.

Wednesday, May 16, 12

• The rvalue reference

• Move Semantics

• Factory Functions

• More rvalue ref rules

• “Perfect” forwarding

Outline

Wednesday, May 16, 12

• The rvalue reference

• Move Semantics

• Factory Functions

• More rvalue ref rules

• “Perfect” forwarding

Outline

Wednesday, May 16, 12

Observation
void f(A& i, A j, A&& k)
{
 // i is not a unique reference
 // j is a unique reference
 // k is a reference to xvalue or prvalue
}

Wednesday, May 16, 12

Observation

• f() can do anything it wants to j, as long as the object
remains destructible.

void f(A& i, A j, A&& k)
{
 // i is not a unique reference
 // j is a unique reference
 // k is a reference to xvalue or prvalue
}

Wednesday, May 16, 12

Observation

• f() can do anything it wants to j, as long as the object
remains destructible.

• f() can do anything it wants to k, as long as k
references a prvalue.

void f(A& i, A j, A&& k)
{
 // i is not a unique reference
 // j is a unique reference
 // k is a reference to xvalue or prvalue
}

Wednesday, May 16, 12

Observation

• f() can do anything it wants to j, as long as the object
remains destructible.

• f() can do anything it wants to k, as long as k
references a prvalue.

• Convention: Do not cast an lvalue to an xvalue unless
you want that object to be treated as a prvalue.

void f(A& i, A j, A&& k)
{
 // i is not a unique reference
 // j is a unique reference
 // k is a reference to xvalue or prvalue
}

Wednesday, May 16, 12

The move constructor
class A
{
 int* data_; // heap allocated
public:
 A(const A& a); // copy constructor

};

Wednesday, May 16, 12

The move constructor

• copy constructor binds to an
lvalue and copies resources.

class A
{
 int* data_; // heap allocated
public:
 A(const A& a); // copy constructor

};

Wednesday, May 16, 12

The move constructor

• copy constructor binds to an
lvalue and copies resources.

• move constructor binds to a
rvalue and pilfers resources.

class A
{
 int* data_; // heap allocated
public:
 A(const A& a); // copy constructor

};

 A(A&& a) noexcept // move constructor
 : data_(a.data_)
 { a.data_ = nullptr;}

Wednesday, May 16, 12

The move constructor
A make_A();

A a1;
A a2 = a1; // Calls copy ctor

Wednesday, May 16, 12

The move constructor
A make_A();

A a1;
A a2 = a1; // Calls copy ctor
A a3 = make_A(); // Calls (or elides)
 // move ctor

Wednesday, May 16, 12

The move constructor
A make_A();

A a1;
A a2 = a1; // Calls copy ctor
A a3 = make_A(); // Calls (or elides)
 // move ctor
A a4 = std::move(a1); // Calls move ctor

Wednesday, May 16, 12

The move constructor

• “Copies” from rvalues are made with the
move constructor, which does nothing but
trade pointers.

A make_A();

A a1;
A a2 = a1; // Calls copy ctor
A a3 = make_A(); // Calls (or elides)
 // move ctor
A a4 = std::move(a1); // Calls move ctor

Fast!

Wednesday, May 16, 12

The move constructor

Wednesday, May 16, 12

The move constructor

• If a class does not have a move constructor,
its copy constructor will be used to copy
from rvalues (just as in C++98/03).

Wednesday, May 16, 12

The move constructor

• If a class does not have a move constructor,
its copy constructor will be used to copy
from rvalues (just as in C++98/03).

• Scalars move the same as they copy.

Wednesday, May 16, 12

The move constructor

Wednesday, May 16, 12

The move constructor

• Copy and move constructors can be
explicitly defaulted.

• The default copies/moves each base and
data member (unless it is defined as
deleted).

struct A
{
 A(const A& a);
 A(A&&) = default;
};

Wednesday, May 16, 12

The move constructor

Wednesday, May 16, 12

The move constructor

• A defaulted move constructor is defined as deleted if:

struct member
{

};
struct A
{
 member m_;

};

• there is a base or member with no move
constructor and it is not trivially copyable.

 A(A&&) = default;

 member(const member&)

// deleted

;

Wednesday, May 16, 12

= default

The move constructor

• A defaulted move constructor is defined as deleted if:

struct member
{

};
struct A
{
 member m_;

};

• there is a base or member with no move
constructor and it is not trivially copyable.

 A(A&&) = default;

 member(const member&) ;

Wednesday, May 16, 12

The move constructor

• A defaulted move constructor is defined as deleted if:

struct member
{

};
struct A
{
 member m_;

};

• there is a base or member with no move
constructor and it is not trivially copyable.

 A(A&&) = default;

 member(const member&);
 member(member&&);

Wednesday, May 16, 12

The move constructor
struct member
{

};
struct A
{
 member m_;

};
 A(A&&) = default;

 member(const member&);

Wednesday, May 16, 12

The move constructor

• CWG issue 1402 (ready) changes the rules such that
the defaulted move members will not be implicitly
deleted, but instead copy the bases and members.

struct member
{

};
struct A
{
 member m_;

};
 A(A&&) = default;

 member(const member&);

Wednesday, May 16, 12

The move constructor

Wednesday, May 16, 12

The move constructor

• You can always test at compile time if a
complete type is move constructible.

static_assert
(
 std::is_move_constructible<A>::value,
 "A should be move constructible"
);

Wednesday, May 16, 12

The move constructor

• You can always test at compile time if a
complete type is move constructible.

static_assert
(
 std::is_move_constructible<A>::value,
 "A should be move constructible"
);

• This tests whether or not A is constructible
from an rvalue A, not if A has a move
constructor.

• But a type with a deleted move constructor
is never move constructible.

Wednesday, May 16, 12

The move constructor

Wednesday, May 16, 12

struct A
{
 A(const A& a) = delete;
 A(A&&) = default;
};

The move constructor

• Copy and move constructors can be explicitly
deleted.

Wednesday, May 16, 12

struct A
{
 A(const A& a) = default;
 A(A&&) = delete;
};

The move constructor

• Copy and move constructors can be explicitly
deleted.

• A deleted move constructor will prohibit copying
from rvalues (rarely a good idea). Normally omit
rather than delete a move constructor.

Wednesday, May 16, 12

struct A
{
 A(const A& a) = default;

};

The move constructor

• Copy and move constructors can be explicitly
deleted.

• A deleted move constructor will prohibit copying
from rvalues (rarely a good idea). Normally omit
rather than delete a move constructor.

Wednesday, May 16, 12

The move constructor

Wednesday, May 16, 12

The move constructor

• A user-declared move constructor (defaulted
or not) will implicitly create a deleted copy
constructor and copy assignment.

struct A
{
 // A(const A&) = delete;
 // A& operator=(const A&) = delete;
 A(A&&);
};

Wednesday, May 16, 12

Implicit Special Members
class A
{
 std::string s_;
public:

};
 // ~A() noexcept = default;

 // A(const A&) = default;
 // A& operator=(const A&) = default;
 // A(A&&) noexcept = default;
 // A& operator=(A&&) noexcept = default;

• Comments indicate compiler supplied definitions.

 // A() noexcept = default;

noexcept is extension

Wednesday, May 16, 12

Implicit Special Members
class A
{
 std::string s_;
public:

};
 // ~A() noexcept = default;

 // A(const A&) = default;
 // A& operator=(const A&) = default;
 // A(A&&) noexcept = default;
 // A& operator=(A&&) noexcept = default;

• Comments indicate compiler supplied definitions.

 A();

Wednesday, May 16, 12

Implicit Special Members
class A
{
 std::string s_;
public:

};
 // ~A() noexcept = default;

 A(const A&);
 // A& operator=(const A&) = default;

• Comments indicate compiler supplied definitions.

deprecated

Wednesday, May 16, 12

Implicit Special Members
class A
{
 std::string s_;
public:

};
 // ~A() noexcept = default;

 // A(const A&) = default;
 A& operator=(const A&) = default;

• Comments indicate compiler supplied definitions.

 // A() noexcept = default;
deprecated

noexcept is extension

Wednesday, May 16, 12

Implicit Special Members
class A
{
 std::string s_;
public:

};
 ~A();

 // A(const A&) = default;
 // A& operator=(const A&) = default;

• Comments indicate compiler supplied definitions.

 // A() noexcept = default;
deprecated

noexcept is extension

Wednesday, May 16, 12

Implicit Special Members
class A
{
 std::string s_;
public:

};
 // ~A() noexcept = default;

 // A(const A&) = delete;
 // A& operator=(const A&) = delete;
 A(A&&);

• Comments indicate compiler supplied definitions.

Wednesday, May 16, 12

Implicit Special Members
class A
{
 std::string s_;
public:

};
 // ~A() noexcept = default;

 // A(const A&) = delete;
 // A& operator=(const A&) = delete;

 A& operator=(A&&);

• Comments indicate compiler supplied definitions.

 // A() noexcept = default;

noexcept is extension

Wednesday, May 16, 12

Advice
• Put these (or other appropriate) tests right

into your release code:

struct A
{
 std::string s_;
 std::vector<int> v_;

};

Wednesday, May 16, 12

Advice
• Put these (or other appropriate) tests right

into your release code:

static_assert(std::is_nothrow_default_constructible<A>::value, "");

struct A
{
 std::string s_;
 std::vector<int> v_;

};

static_assert(std::is_copy_constructible<A>::value, "");
static_assert(std::is_copy_assignable<A>::value, "");
static_assert(std::is_nothrow_move_constructible<A>::value, "");
static_assert(std::is_nothrow_move_assignable<A>::value, "");
static_assert(std::is_nothrow_destructible<A>::value, "");

// Howard says put these tests in!

Wednesday, May 16, 12

Advice
• Put these (or other appropriate) tests right

into your release code:

static_assert(std::is_nothrow_default_constructible<A>::value, "");

struct A
{
 std::string s_;
 std::vector<int> v_;

};

static_assert(std::is_copy_constructible<A>::value, "");
static_assert(std::is_copy_assignable<A>::value, "");
static_assert(std::is_nothrow_move_constructible<A>::value, "");
static_assert(std::is_nothrow_move_assignable<A>::value, "");
static_assert(std::is_nothrow_destructible<A>::value, "");

 A(const A&) = default;

// Howard says put these tests in!

Wednesday, May 16, 12

Advice
• Put these (or other appropriate) tests right

into your release code:

struct A
{
 std::string s_;
 std::vector<int> v_;

};

static_assert(std::is_copy_constructible<A>::value, "");
static_assert(std::is_copy_assignable<A>::value, "");

static_assert(std::is_nothrow_destructible<A>::value, "");

 A(const A&) = default;

// Howard says put these tests in! Or else!!!

Wednesday, May 16, 12

The move assignment
operator

Wednesday, May 16, 12

The move assignment
operator

• Everything that’s been said about
the move constructor applies to
the move assignment operator.

Wednesday, May 16, 12

The move assignment
operator

class A
{
 int* data_; // heap allocated
public:
 A& operator=(const A& a); // copy

};

Wednesday, May 16, 12

The move assignment
operator

class A
{
 int* data_; // heap allocated
public:
 A& operator=(const A& a); // copy

}; • copy assignment binds to lvalue rhs and copies
resources.

Wednesday, May 16, 12

The move assignment
operator

class A
{
 int* data_; // heap allocated
public:
 A& operator=(const A& a); // copy

};

 A& operator=(A&& a) noexcept // move
 {
 std::swap(data_, a.data_);
 return *this;
 }

• copy assignment binds to lvalue rhs and copies
resources.

• move assignment binds to rvalue rhs and does
whatever is fastest to assume value of rhs.

Wednesday, May 16, 12

The move assignment
operator

Wednesday, May 16, 12

class A
{
 fstream f_;
public:

};

 A& operator=(A&& a) noexcept
 {
 f_ = std::move(a.f_);
 return *this;
 }

The move assignment
operator

• If your type holds std::lib components,
move assigning those data members will
generally do the right thing.

Wednesday, May 16, 12

• If all you need to do is move assign
bases and members, consider doing
it with “= default”.

class A
{
 fstream f_;
public:

};

 A& operator=(A&& a) = default;

The move assignment
operator

Wednesday, May 16, 12

class A
{
 fstream f_;
public:

};

The move assignment
operator

• Or doing it implicitly.

Wednesday, May 16, 12

The move assignment
operator

• Does the move assignment operator
need to check for self-assignment?

template <class T>
class A {
 T* data_; // heap allocated
public:

};

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

Wednesday, May 16, 12

The move assignment
operator

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

Wednesday, May 16, 12

The move assignment
operator

• Convention: Do not cast an lvalue to an xvalue unless
you want that object to be treated as a prvalue.

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

Wednesday, May 16, 12

The move assignment
operator

• Convention: Do not cast an lvalue to an xvalue unless
you want that object to be treated as a prvalue.

• If ‘a’ refers to a prvalue, then it is not possible for ‘this’
and ‘a’ to refer to the same object.

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

Wednesday, May 16, 12

The move assignment
operator

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

Wednesday, May 16, 12

The move assignment
operator

• However if ‘a’ refers to an xvalue, then it is possible
for ‘this’ and ‘a’ to refer to the same object.

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

a = std::move(a);

Wednesday, May 16, 12

The move assignment
operator

• However if ‘a’ refers to an xvalue, then it is possible
for ‘this’ and ‘a’ to refer to the same object.

• But you’ve arguably broken convention.

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

a = std::move(a);

Wednesday, May 16, 12

The move assignment
operator

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

Wednesday, May 16, 12

The move assignment
operator

• Self-swap is one
place where this can
happen.

template <class T>
void swap(T& x, T& y) {
 T tmp(std::move(x));
 x = std::move(y);
 y = std::move(tmp);
}

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

std::swap(a, a);

Wednesday, May 16, 12

The move assignment
operator

template <class T>
void swap(T& x, T& y) {
 T tmp(std::move(x));
 x = std::move(y);
 y = std::move(tmp);
}

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

std::swap(a, a);

Wednesday, May 16, 12

The move assignment
operator

template <class T>
void swap(T& x, T& y) {
 T tmp(std::move(x));
 x = std::move(y);
 y = std::move(tmp);
}

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

std::swap(a, a);

• However in this
case, the self-move
assignment happens
only on a moved-
from value.

Wednesday, May 16, 12

The move assignment
operator

template <class T>
void swap(T& x, T& y) {
 T tmp(std::move(x));
 x = std::move(y);
 y = std::move(tmp);
}

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

std::swap(a, a);

Wednesday, May 16, 12

The move assignment
operator

template <class T>
void swap(T& x, T& y) {
 T tmp(std::move(x));
 x = std::move(y);
 y = std::move(tmp);
}

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

std::swap(a, a);

• Self-move assignment
from a moved-from
value is most often
naturally safe.

Wednesday, May 16, 12

The move assignment
operator

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

Wednesday, May 16, 12

The move assignment
operator

 A& operator=(A&& a) noexcept {
 delete data_;
 data_ = a.data_;
 a.data_ = nullptr;
 return *this;
 }

• Indeed, in all permutation rearrangement algorithms
(those that do not “remove” elements), the target of
a move assignment is always in a “moved-from” state.

Wednesday, May 16, 12

The move assignment
operator

Wednesday, May 16, 12

The move assignment
operator

• I treat self-move assignment and self-swap as a
performance bug in my code.

Wednesday, May 16, 12

The move assignment
operator

• I treat self-move assignment and self-swap as a
performance bug in my code.

• My move assignment operators are “self-safe”
only when in a moved-from state.

Wednesday, May 16, 12

The move assignment
operator

• I treat self-move assignment and self-swap as a
performance bug in my code.

• My move assignment operators are “self-safe”
only when in a moved-from state.

• Feel free to check for self-move assignment in
your code.

Wednesday, May 16, 12

The move assignment
operator

• I treat self-move assignment and self-swap as a
performance bug in my code.

• My move assignment operators are “self-safe”
only when in a moved-from state.

• Feel free to check for self-move assignment in
your code.

• Either with an if - to ignore the bug.

Wednesday, May 16, 12

The move assignment
operator

• I treat self-move assignment and self-swap as a
performance bug in my code.

• My move assignment operators are “self-safe”
only when in a moved-from state.

• Feel free to check for self-move assignment in
your code.

• Either with an if - to ignore the bug.

• Or with an assert - to catch the bug.

Wednesday, May 16, 12

Assignment boo boo’s

• In C++98/03 it became popular to define
assignment using a copy/swap pattern.

• This is very good if you need strong
exception safety.

class A
{
 std::vector<int> v_;
 std::string s_;
public:

};

 A& operator=(A a) {
 swap(a);
 return *this;
 }

Wednesday, May 16, 12

Assignment boo boo’s
class A
{
 std::vector<int> v_;
 std::string s_;
public:

};

 A& operator=(A a) {
 swap(a);
 return *this;
 }

Wednesday, May 16, 12

Assignment boo boo’s

• It is very efficient when
assigning from rvalues.

class A
{
 std::vector<int> v_;
 std::string s_;
public:

};

 A& operator=(A a) {
 swap(a);
 return *this;
 }

Wednesday, May 16, 12

Assignment boo boo’s

• It is very efficient when
assigning from rvalues.

• It is not so efficient when
assigning from lvalues.

class A
{
 std::vector<int> v_;
 std::string s_;
public:

};

 A& operator=(A a) {
 swap(a);
 return *this;
 }

Wednesday, May 16, 12

Assignment boo boo’s
class A
{
 std::vector<int> v_;
 std::string s_;
public:

};

 A& operator=(A a) {
 swap(a);
 return *this;
 }

Wednesday, May 16, 12

Assignment boo boo’s

• Strong exception safety is good, but it
is not free.

class A
{
 std::vector<int> v_;
 std::string s_;
public:

};

 A& operator=(A a) {
 swap(a);
 return *this;
 }

Wednesday, May 16, 12

