
Lessons from the
C++11 Standard

1

Who Am I?

• Alisdair Meredith

• ISO committee member since 2003

• Current Library Working Group Chair

2

What is this session?

• War Stories

• An appreciation of the standard
specification

• Some useful library design guidelines

3

First Standard Meeting

• Oxford 2003

• Meeting specified the majority of TR1

• Bjarne opened Evolution for C++0x
submissions

• Attempt to remove ‘export’ from the
language

4

My Proposal

• N1479 A proposal for ‘array’

• Assumed I should have something to show
and tell

• Wrote up the simplest class I could
imagine, citing 3 prior versions in print, plus
a Boost library!

• Now published in the C++11 standard

5

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1479.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1479.html

What did I learn?

• Proposal is not necessary to attend!

• Proposal is probably the best way to get
involved

• The standard has a distinct way of saying
things - expect to rewrite!

• Specification is all that matters

• implementation provides useful feedback

6

Library TR1

• Number of disparate library extensions

• Many drawn from Boost

• New committee members

• Well tested and documented libraries

• User doc is not a library specification

• Other contributions from existing members

7

Towards a new
Standard

• TR1 a valuable experience

• useful libraries

• training for standards process

• Most of TR1 adopted directly into C++0x

• Math functions became a separate standard

8

What is the C++
Standard Library?

• A collection of classes and functions?

• useful code shipped with the compiler?

• A vocabulary?

• A fundamental part of the language?

9

Vocabulary

• Container

• iterator

• CopyConstructible and other requirements

• string

• streams

10

The C++ Standard
Library is

• A specification, not an implementation

• All public interfaces are documented

• Implementation details may be hinted

• Contract between users and implementers

• Specification must be clear and unambiguous

• Implementations may make distinct choices

11

A standard Library for
C++11

• Provide More facilities

• Concurrency

• Support and exploit new language features

• Resolve bug reports

• Clearer and more consistent text

12

A Better Specification

• From Concepts to Requirements

• Consistent and simplified wording

• Eliminating weasel words

• Better organization

• Several clauses moved around

• bitset is no longer an associative
container!

13

Concepts

• Key language feature proposed by evolution

• A ‘metatype system’ constraining template
parameters

• A complex feature to solve a lot of
problems

• Fundamental to a successful C++0x library

• See Larisse Voufo’s session tomorrow

14

Concepts in C++03

• Many concepts implied by existing library

• Iterators provide a good model

• Algorithms make good use

• Containers less clearly specified

• C++03 describe code by valid syntax

• concepts describe semantics too

15

Concepts Mismatch

• Syntactic concepts for backwards
compatibility

• Semantic concepts for new code without
backwards compatibility concerns

• Doubled the number of concepts

• Many more fine-grained concepts

• Design space no longer simple

16

What Did We Learn?

• Many existing library ‘concepts’ are
underspecified

• Too many requirements have exemptions

• Named requirements clauses support clear
and consistent specifications

• Requirements vocabulary a useful product
in its own right

17

The End Result

• A growing number of named requirements

• Many requirements gathered together into
the library introduction, to be referenced
throughout the library

• Requirements are specified much more
precisely, with fewer escape clauses

• Container requirements are still special...

18

Concept Based
Overloading

• A key concept feature to direct overload
resolution based on matching concepts

• Syntactic emulation possible with SFINAE

• SFINAE is user to (ab)use with library utilities

•enable_if

• type traits

•declval

19

SFINAE in the Library

• Many function templates are required to
use SFINAE to match only compatible
arguments

• Several library components use SFINAE-
based detection techniques to reduce their
set of requirements, by providing defaults
for missing features

• C++11 allocators much simpler to write

20

Weasel Words

• Is ‘size’ always a constant time operation?

• Can calling ‘begin’ invalidate an iterator?

• Is a default constructed container empty?

• Are all containers EqualityComparable?

• Are all random access iterators mutable?

21

Allocator Weasels

• An implementation may assume:

• All instances of a given allocator type are
required to be interchangeable and always
compare equal to each other.

• The typedef members pointer,
const_pointer, size_type, and
difference_type are required to be T*, T
const*, size_t, and ptrdiff_t, respectively.

22

Language Changes are
Disruptive

• New language features affect the library

• Especially those that affect interface design

• rvalue references vs. lambda expressions

• Early adoption hurts when the language
feature evolves

• Early adoption gives feedback for language
designers, in order to evolve

23

rvalue references

• Two key applications

• move semantics

• perfect forwarding

• Library utilities for users to exploit feature

• std::move

• std::forward<T>

24

Applying Rvalues

• Large, disruptive change affecting many
library clauses

• Happened as TR1 integrated, so many
missed opportunities (caught later)

• Subsequent proposals evaluated on the
expectation of an rvalue-enabled interface

25

Rvalue Idioms

• Move support: add two overloads

• const & value_type to copy lvalues

• && value_type to move from rvalues

• Perfect forwarding: a single signature

•template<typename T>
void func(T && argument);

26

Problems!!

• By initial rules, a function taking a && does
not know if it is passed an lvalue or an rvalue

• relies on an lvalue overload being in the
overload set to ‘steal’ lvalues

• New rules!

• lvalues never bind to rvalue references

• only library impact : move/forward utilities

27

Late Problems!!

• Implicitly generated move constructors

• Explicit move constructor deletes implicit
copy constructor

• many library types became ‘move-only’

• Language feature became contentious and
unstable

• Not resolved until the final meeting!

28

Compatibility Problems

• vector move constructor could not offer
the strong exception safety guarantee

• yet will be called when some existing
code recompiled unchanged!

• Problem: copy constructor called by
overload resolution if no move defined

•vector<pair<string, user_type>>

29

No easy solution

• Invent a new language feature long after the
final deadline!! (CD1 ballot resolution)

• noexcept exception specifications

• noexcept operator

• Test for a noexcept move, otherwise use
safe-but-expensive copy

30

How Does noexcept
apply to the library?

• A new language feature to adorn all our
interfaces!

• Potential of many late-breaking edits

• Many library APIs are documented as not
throwing an exception

• Only a few need the feature to solve the
container problem

31

Library Guideline for
noexcept

• Library is a specification, not an
implementation

• Wide vs. Narrow contracts

• Specify only those places that noexcept is
needed, or is guaranteed and always defined

• Vendors may use in implementations as an
optimization

32

Experience is Vital

• Late changes often due to late experience
with a feature

• No (core) specification was unchanged
following implementation

• Library TR1 features had notably less churn
than other parts of the library

• Concurrency library churned every meeting

33

Sometime Late
Invention is Necessary
• Concurrency is possible the key feature of

C++11

• Lack of a concurrency library would have
been tragic

• No single clear library API, or even
semantic

• thread cancellation particularly contentious

34

Proceed with Caution

• Threads library modeled after Boost,
utilizing new language features

• Try to establish a clear set of goals to know
when ‘done’

• Library design tracked almost live by the
working paper!

• Boost tracking the standard invaluable

35

ABI Matters

• Vendors represent many customers, and
breaking their code is not an option

• ABI breakage is far more subtle than API
breakage - not everyone can recompile

• Not all ABI breakages are equal

• Loss of CoW string broke HP

• ios_base::failure less of an issue

36

Type Erasure is Good!

• std::function

• target functor

• allocator

• std::shared_ptr

• deleter

• allocator

37

More on Type Erasure

• unique_ptr vs. shared_ptr

• do not always want to pay the cost

• boost::any

• Someone should write this up!

• boost::filepath

• a different kind of erasure

38

Key Lessons

• Library is a specification

• No substitute for experience

• Sometimes we must proceed anyway

• Language changes affect the library

• Late changes break things!

• Not all language changes are equal

39

C++11 Library

• Move Semantics

• Type erasure

• Widespread use of SFINAE

• Support new language

• TR1

• Concurrency

40

The Future!

• More work delivered working in parallel

• New Study Groups focus on specific areas

• Deliver more frequent specifications as
study groups complete projects

• New proposals spawn new Study Groups

• Work on main standard continues

41

Study Groups

• SG1 Concurrency

• SG2 Modules

• SG3 Filesytem

• SG4 Networking

• ... Numeric facilities

42

