

Moving Boost to Git

Taking Advantage of Distributed
Version Control

Beman Dawes
May 22, 2012

Show of hands

• Already familiar with Git?
• Use Git regularly?

 Ask Questions! Interrupt!
Please!

Motivation for this session

• To inform you about Git and about
Modularization, as runup for a straw poll.

• Build concensus.

Session Coverage
• Why Change? - The big picture.
• Git Resources.
• Quick Git Tutorial.
• Pros and cons of Git.
• Workflows.
• Modularizing Boost using Git.
• Action Plan?

Why Change?

Motivations

• Boost needs to scale up for more libs

• Developer preference, driven by technical
benefits

• First step of Boost 2.0 effort to improve all
Boost infrastructure

Git Resources

• Pro Git book – http://progit.org/book/
• Git - SVN Crash Course –

http://git.or.cz/course/svn.html
• GitHub - http://github.com/
• TortoiseGit - http://

code.google.com/p/tortoisegit/
• Git Flow – see separate slide.
• Your favorite search engine.

http://progit.org/book/
http://git.or.cz/course/svn.html
http://github.com/
http://code.google.com/p/tortoisegit/
http://code.google.com/p/tortoisegit/
http://code.google.com/p/tortoisegit/

Quick Git Tutorial
Design

Version Control Taxonomy
• Centralized version control system (CVCS)

– A central repository contains all history, branches,
tags.

– A working copy contains only a view of the files as of
a specific sub-tree at a specific point-in-time and
nothing more.

• Distributed version control system (DVCS)
– Every copy, both public and private, is a full repository

containing all history, branches, tags, etc.
– A working copy makes visible a view of the files as of

a specific sub-tree at a specific point-in-time, but the
full repo is still there in a hidden directory.

• Subversion is a Centralized Version
Control System

• Git is a Distributed Version Control System

Centralized VCS (Pro Git Book)

Distributed VCS (Pro Git Book)

Quick Git Tutorial
Example

Simple Library

simple.git repo
at github

Developer
Jane

cd /projects
git help
git help clone
git clone git@github.com:Beman/simple
cd simple
dir /ah
ls -a
echo This is a README file >README
type README
git add README
git help commit
git commit --dry-run
git commit -m "Initial commit"
notepad README
git status
git commit -a -m "Add period"
git help push
git push --dry-run "origin" master
git push "origin" master
…
git pull

Aside: Local simple.git

cd /cloud
git init --bare simple.git

Simple Library

simple.git repo
at github

Developer
Harry

Developer
Jane

[Add Developer Harry via
TortoiseGit]

Pros and Cons of Git

First Order Git Advantages
 over Subversion

• Faster operations; often much faster.
• Can work offline, including commits,

branch creation, merges.
• Additional workflow support:

– Multi-level commits ("stage/commit/push")
– Private local branches

• No single point of failure; implicit backup.

Second order Git Advantages
• Merging often works better and is easier,

particularly for non-expert users.
– Cumulative effect of 1st order advantages.
– Better merging was central design goal.

• Branching often used more effectively,
particularly by non-expert users.
– Cumulative effect of 1st order advantages.
– Aids project newbies, minor feature branches

• Innovative and improved workflows

Other Git Positives
• Nice set of minor features; e.g. stash.
• Extensive support for moving from Subversion.

– git svn Command
– TortoiseGit
– Git - SVN Crash Course http://git.or.cz/course/svn.html
– Etc.

• Good community support, online docs,
ecosystem (i.e. GitHub).

• Network effect; Git is very widely known and
used, and that reduces Boost support costs.

• Pleasant to use.

http://git.or.cz/course/svn.html

Git negatives Impacting Boost

• Changing VCS is a pain
• Trac linkage may or may not be a

problem

Git Negatives Not Impacting
Boost

• No support for locks
• Cloning expensive for very large repos
• Some DVCS advantages moot if other

developer tools only work online
• DVCS makes obliteration particularly

difficult
• Access control sometimes an issue: “Users

who choose decentralized version control typically must
arrange things such that access control on a per-
repository basis is sufficient.”

Why not Mercurial?

Mercurial is Git’s main competitor. It has the
technical features Boost needs, has a
somewhat more coherent interface, and is
widely respected by DVCS aficionados.

But Git seems to be the DVCS used and
preferred by more developers, both at
Boost and elsewhere. So given the
similarity between the two, Git wins
because of network effect.

Workflows

Git Flow branching and workflow
model

• Vincent Driessen's original branching
model post – http://nvie.com
/posts/a-successful-git-branching-model/

• Git extensions for high-level repository
operations implementing the model –
https://github.com/nvie/gitflow#readme
(See Getting Started section to learn more
about git flow)

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/nvie/gitflow

Modularizing Boost using Git

Motivation for Modularization
• Scaling Boost up to many more libraries

implies decentralization and decoupling.
Separating out per-library modules
achieves that, is a well-know practice, has
been studied and tested for Boost.

• Boost regression testing, release
management, developer workflow, and
distribution/install needs hard to meet with
current structure.

Key Modularization
Requirements

• Preserve History
• Preserve User and Developer

Infrastructure

Proposed Boost Modularization
• Each Boost library has its own public repository

– Releases asynchronously from Boost super-project.
– Write perms: The library’s developers.
– Each library chooses its own workflow and directory

structure as long as basic requirements are met.
• Boost super-project with public repository

– Each library is included as a sub-module.
– Also includes some infrastructure, although that may

eventually move to separate public repos.
– Write perms: Boost release & infrastructure teams.

• Public repos hosted by Boost at GitHub?

Boost Repository Relationships
Boost

 Super-Project

Developer
Harry

Developer
Jane

Boost
Foo Library

Boost
Bar Library

Users

Developer
Meow

Read-Write

Read-Only

Origin

Developer
Harry

Origin

Origin

Origin OriginOrigin

Origin

Origin

Sub-module Sub-module

Try it (where network allows)

Commands…

git clone http://github.com/boost-lib/boost boost-modules
cd boost-modules

git submodule update --init (16 minutes on DSL connection)
cmake -P forward_headers.cmake (2 minutes on SSD hard-drive)

[Investigate with TortoiseGIT]
[Demo a bjam build]

[Show boost_test output]
[Demo a MSVC10 build]

Possible Action Plans?
Option 1a – Switch to Git, but no modularization.
 Stick with current infrastructure.

Option 1b – Switch to Git and modularization.
 Stick with current infrastructure.

Option 2 – Now: (1a) or (1b).
 Future: Ryppl infrastructure,
 modularizing first if not done yet.

Option 3 – Convert directly to Ryppl infrastructure.

Motivation for single Git +
Modularization transition

• Cost of a single transition is far less than
cost of two separate transitions. That
holds for all cost metrics.

• The benefit of the Git transition isn’t fully
realized until the modularization transition
is complete.

Acknowledgments
• Troy Straszheim

• Dave Abrahams

• John Wiegley

• Daniel Pfeifer

Thank You!

	Moving Boost to Git
	Slide 2
	Slide 3
	Slide 4
	Talk Coverage
	Why?
	Motivation
	Git Resources
	Part I – Git and Distributed Version Control
	Version Control Taxonomy
	Subversion & Git Classification
	Centralized VCS (Pro Git Book)
	Distributed VCS (Pro Git Book)
	Part I – Git and Distributed Version Control
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	First Order Git Advantages over Subversion
	Second order Git Advantages
	Other Git Positives
	Git Cons Impacting Boost
	Git Cons Not Impacting Boost
	Why not Mercurial?
	Slide 29
	Git Flow branching and workflow model
	Slide 31
	Part II – Modularizing Boost using Git
	Motivation for Modularization
	Slide 34
	Proposed Boost Modularization
	Slide 36
	Slide 37
	Try it
	Investigate with TortoiseGIT
	Slide 40
	Motivation for single Git + Modularization transition
	Slide 42
	Slide 43

