
1

Asynchronous Programming With
Boost Meta State Machine

And The Asynchronous
Library

2

Contents

 Introducing Story
 Why State Machines?
 Our Pattern Of The Day
 Boost Meta State Machine
 Asynchronous programming
 CD Player example

3

Introducing Story

 A restaurant as a single employee
 Burgers are put in a queue
 A first customer comes

4

Introducing Story

 More customers keep coming
 What to do?

5

Introducing Story

 A second employee is hired
 The owner hopes to reduce

wait times

6

Introducing Story

 This brings chaos
 Sometimes employees fight to

get their customer a burger first

7

Introducing Story

 Sometimes they get in each
other's way

 The line of waiting customers
grows and grows

 It just does not work
 Costs explode
 Wait times too
 Customers flee the restaurant
 The restaurant gets bankrupt
 Can we avoid this?

8

Introducing Story

 We keep a single worker
 The Worker runs really fast from

cash desk to cash desk, to bur-
gers, drinks, etc.

 The Worker never ever waits
 Instead he remembers in which

state of the order each customer
is

 The Worker only reacts to events:
burger ready, customer picked
drink, etc.

9

Introducing Story

Our Worker in action:

1
0

Why State Machines?

State machines help us:
 Design
 Document
 Debug
 Think asynchronously

1
1

Our Pattern Of The Day

 A Manager implemented as a state machine runs in its own thread
 The Manager is non-blocking.
 Target hardware is controlled asynchronously and lives in other

threads or machine.

To achieve this we need:
 A state machine library
 Infrastructure to manage asynchronous behavior.

1
2

Asynchronous Programming

std::async / boost::async

std::future<int> f = std::async([](){return 42;}); // executes asynchronously

int res = f.get(); // wait for result, block until ready

Simple, but...

► Blocking is bad for state machines (no run to completion).

► Blocking prevents diagnostics.

► Blocking makes your program less responsive.

► Blocking reduces opportunities for concurrency.

Waiting is ok, blocking no.

Bonus question, in which thread is lambda executed?

1
3

Asynchronous Programming

std::async / boost::async

We have for alternatives:
 Block while waiting
 Poll
 Carry a bag of futures then do one of above

1
4

Asynchronous Programming

std::async / boost::async

Do you spot a problem?

{

 std::async(std::launch::async, []{ f(); });

 std::async(std::launch::async, []{ g(); });

}

► 2nd line does not run until f() completes

http://en.cppreference.com/w/cpp/thread/launch
http://en.cppreference.com/w/cpp/thread/launch

1
5

Asynchronous Programming

 Better with N3558 / N3650?

future<int> f1 = async([]() { return 123; });
future<string> f2 = f1.then([](future<int> f)
{
 return f.get().to_string(); // here .get() won’t block
});
// and here?

string s= f2.get();

1
6

Asynchronous Programming

Boost.Asio. Example:

// won’t block
boost::asio::async_write(socket_, request_,
 boost::bind(&client::handle_write_request, this,
 boost::asio::placeholders::error));

// callback, possibly much later
void handle_write_request(const boost::system::error_code& /*error*/)
{…}

1
7

Asynchronous Programming

Boost.Asio. Disadvantages:
 Object lifetime
 Managing asynchrony
 Limited capabilities besides network communication

1
8

Asynchronous Programming

Maybe something like this would be better?

post_callback(
 [](){return 42;} // long-lasting task
 [](boost::future<int> res){...} // callback
);

But thread-safe, forwarding exceptions, non-blocking and taking object li-
fetime into consideration.

1
9

Example: CD Player

2
0

Example: CD Player

2
1

Example: CD Player

2
2

Example: CD Player

2
3

Patterns: Active Object

 Makes thread-safe a non-thread-safe object by serializing calls
 Outside world only sees a Proxy
 A Scheduler takes jobs from an ActivationQueue
 Jobs are executed within the Scheduler context
 Active Objects are expensive (a thread per object)
 Active Objects are not helping parallelize

2
4

Patterns: Proactor

 An Initiator calls an AsynchronousOperation
 A Job is enqueued into a CompletionEventQueue
 An AsynchronousOperationProcessor executes the job
 A Proactor dispatches a CompletionHandler

2
5

Patterns: Thread-Safe Interface

struct Unsafe
{
 void foo()
 {
 m_mutex.lock();
 foobar();
 m_mutex.unlock();
 }
private:
 void foobar()
 {
 // we are already locked
 // when called,
 // do something while locked
 }
 boost::mutex m_mutex;
};

 Public members lock
 Private members do not
 Safe?

2
6

(Boost) Asynchronous

● Will be offered for review (Review Manager?)

● C++11 (will make for interesting discussions...)

● Compiles with g++ >= 4.7 && clang 3.4

● Header only. Will however require linking to Boost.Thread,

Chrono, DateTime, possibly Serialization.

2
7

Asynchronous: Principles

● Makes you think Tasks, not Threads

● Helps prevents races, deadlocks, crashes

● Executes Tasks asynchronously

● Result of Tasks come as callback

● No Blocking!!! Waiting yes, blocking, no.

2
8

Asynchronous: Definitions

 Scheduler: object having 0..n threads, executing jobs or callbacks.

Stops threads when destroyed.

 Weak Scheduler: a weak_ptr to a scheduler.

 Servant: object living in a (single-threaded) scheduler, starting

tasks and handling callbacks.

 Queue: holds jobs for a scheduler to execute

 Servant Proxy: a thread-safe object looking like a Servant and se-

rializing calls to it

 Scheduler Shared Proxy: object holding a scheduler and interfa-

cing with it. The last instance joins the threads of the scheduler.

 Stealing: between threads or schedulers.

 Posting: enqueueing a job into a Scheduler's queue.

2
9

Asynchronous: Lifetime

● Create any number of Servants within a single-thread context

● Servants are visible to outside world through proxies

● The last one needing it stops the thread

● The last proxy joins the thread

● Threadpools allow posting of long-lasting jobs and parallelizing

● And most of all, never ever block!!!

3
0

3
1

Features

● Lifetime control

● Proxies

● Interrupting

● Diagnostics

● Continuations

● Distributing

● Parallel Algorithms

● Interaction with Qt / Boost.Asio

● Queues, Threadpools, Task Priority

3
2

Hello, asynchronous world

// a threadpool with 3 threads
auto scheduler =
 create_shared_scheduler_proxy(new threadpool_scheduler<
 lockfree_queue<> >(3));

// post a simple task and wait for result
boost::shared_future<int> fui =
 boost::asynchronous::post_future(scheduler,
 [](){return 42;});

int res = fui.get();

3
3

ServantProxy

struct Servant
{
 Servant(int data): m_data(data){}
 int doIt()const { return 5; }
 void foobar(int i, char c)const { }
private:
 int m_data;
};

 Our servant is a plain, boring class
 We want it to offer two methods „outside“
 The constructor requires data

3
4

ServantProxy

class ServantProxy :
public servant_proxy<ServantProxy,Servant> {
public:
// forwarding constructor. Scheduler to servant_proxy,
// followed by arguments to Servant.

template <class Scheduler>
ServantProxy(Scheduler s, int data):
servant_proxy<ServantProxy,Servant>(s, data) {}

// the following members must be available "outside"
BOOST_ASYNC_POST_MEMBER(foobar)
// for doIt, we'd like a future
BOOST_ASYNC_FUTURE_MEMBER(doIt)
};

3
5

ServantProxy

{
auto scheduler = create_shared_scheduler_proxy(
 new single_thread_scheduler<lockfree_queue<> >);

 {
 // arguments (here 42) are forwarded to Servant's constructor
 ServantProxy proxy(scheduler,42);
 // post a call to foobar, arguments are forwarded.
 proxy.foobar(1,'a');
 // post and get a future because we're interested in the result.
 boost::shared_future<int> fu = proxy.doIt();

 }// here, Servant's destructor is posted
}// scheduler is gone, its thread has been joined

3
6

Threadpool

struct Servant : trackable_servant<>
{
 Servant(any_weak_scheduler<> scheduler)
 : trackable_servant<>
 (scheduler,create_shared_scheduler_proxy(new
 threadpool_scheduler<lockfree_queue<> >(3)))
//...
};

 We now equip our servant with a threadpool
 The threadpool has 3 threads
 The servant knows his own (weak) scheduler for callbacks
 We can now make use of post_callback

3
7

post_callback

post_callback(
 // possibly long work, executes in threadpool, if servant alive
 [](){return 42;},
 // callback functor. Executes in Servant's context
 // Servant is alive if this is called
 [this](boost::future<int> res){/*...*/}
);

 Work task is posted to threadpool
 Work task executed if Servant is still alive
 Callback executed if Servant is still alive
 Using this in callback is safe
 Return value or exception from task in future
 Future is non-blocking

3
8

Interrupting

Why to interrupt?

 Exploding algorithms
 System is drowning
 No need of result any more
 Requires support from Task itself

3
9

Interrupting
any_interruptible interruptible =
 interruptible_post_callback(
 // task
 [](){
 // boost::this_thread::sleep is an interruption point
 boost::this_thread::sleep
 (boost::posix_time::milliseconds(1000));},
 // callback functor.
 // most likely will not be called
 [this](boost::future<void> res){/*...*/}
);
interruptible.interrupt();

 Work task is posted to threadpool
 Immediately after we try to interrupt
 Sleep is a documented interruption point for boost::thread and

most likely will be interrupted
 Callback will not be called

4
0

Logging

Why do we need this?

 Find bottlenecks
 Find out inefficiencies in tasks
 Find concurrency opportunities
 Find out which tasks can be started earlier

Logging + state machines in an Active Object are your friends.
You will know:
 Where is your bottleneck
 Which tasks are worth parallelizing
 How long you spent in a state

4
1

Logging
// we need a job type
typedef any_loggable<chrono::high_resolution_clock> servant_job;

// we need our servant to make use of it
struct Servant : trackable_servant<servant_job,servant_job>

post_callback(
 [](){return 42;},
 [this](boost::future<int> res){/*...*/},
 // job / callback name
 "int_async_work"
);
// we also have a new macro
BOOST_ASYNC_FUTURE_MEMBER_LOG(foo,"foo")

4
2

Logging

Calling get_diagnostics() on a scheduler proxy will give us:

 get_posted_time() → Clock::time_point
 get_started_time() → Clock::time_point
 get_finished_time() → Clock::time_point
 is_interrupted() → bool

4
3

Schedulers / Stealing

Asynchronous has a small range of schedulers:

 single_thread_scheduler: one queue, one thread
 asio_scheduler: one io_service per thread
 threadpool_scheduler: one queue, 0..n threads
 multiqueue_threadpool_scheduler: 1..n queues and threads.

Threads steal from each others' queues

For the last 2, we have a stealing_xxx version, for use in a
composite_threadpool_scheduler, bundling them so they can
steal from each other, according to their priority:

auto tp = create_shared_scheduler_proxy(new
 multiqueue_threadpool_scheduler<lockfree_queue<>> (1));
auto tp2 = create_shared_scheduler_proxy(new
 stealing_multiqueue_threadpool_scheduler<lockfree_queue<>> (3));
auto tp_worker = create_shared_scheduler_proxy(new
 composite_threadpool_scheduler<> (tp,tp2,...));

4
4

Priorities
 Queue priority: to which queue we post a task:

auto scheduler =
 create_shared_scheduler_proxy(new single_thread_scheduler<
 any_queue_container<>>
 (any_queue_container_config<threadsafe_list<>>(1),
 any_queue_container_config<lockfree_queue<> >(3)));

 Scheduler priority: to which scheduler of a composite we post a
task, either directly or through an extra post_callback argument:

post_callback(
 [](){},
 [](boost::future<void>){},
 "",
 1, // threadpool prio
 0 // callback prio
);

4
5

Interacting with Qt

 Make your servant inherit qt_servant
struct QtServant : public QObject
 , public qt_servant<>

 Use post_callback, as always
post_callback(
 [](){return 42;},
 [this](boost::future<int> res){/*...*/},);

Advantages:
• All of Asynchronous' threadpools available
• Logging, interrupting of tasks possible
• Algorithms, Distributing, etc.

4
6

Continuations

 For recursive tasks (Fibonacci)
 Or for future(s) gotten from whatever task / library

=> create a continuation, called when all tasks are done

Advantages:
 Simple to use
 Works with futures
 Support exceptions
 recursive

Disadvantage:
 Becomes very fast messy. Solution: state machines...

4
7

Continuations

struct fib_task : continuation_task<long>
{
 fib_task(long n,long cutoff):n_(n),cutoff_(cutoff){}
 void operator()()const
 {
 // the result of this task
 // or an exception
 continuation_result<long> task_res = this_task_result();
 if (n_<cutoff_)
 {
 // n < cutoff => execute ourselves
 task_res.set_value(serial_fib(n_));
 }
 else

4
8

Continuations
 {
 // n_ >= cutoff create 2 new tasks
 create_continuation(
 // called when subtasks are done, set our result
 [task_res]
 (std::tuple<boost::future<long>,boost::future<long>> res)
 {
 try{
 long r = std::get<0>(res).get() + std::get<1>(res).get();
 task_res.set_value(r);
 }
 catch(std::exception& e){
 task_res.set_exception(boost::copy_exception(e));}
 },
 // recursive tasks
 fib_task(n_-1,cutoff_),
 fib_task(n_-2,cutoff_));
 }
 }
 long n_;long cutoff_;
};

4
9

Continuations

post_callback(
 [n,cutoff]()
 {
 // a top-level continuation is the first one
 // in a recursive serie.
 // Its result will be passed to callback
 return top_level_continuation<long>(fib_task(n,cutoff));
 },
 // callback with fibonacci result.
 [this](boost::future<long>){/*...*/}
);

5
0

Continuations

We have more possibilities:

● create_continuation(
[](std::vector<boost::future<int>>){},
std::move(fus)); // fu is std::vector<boost::future<int>>

● create_continuation(
[](std::tuple<boost::future<int>,boost::future<int>>){},
std::move(fu1),std::move(fu2));

5
1

Distributing: Job Server

Preconditions:

 Task is serializable, as defined by Boost.Serialization
 Return value or exception is serializable

We have a new scheduler, used as a threadpool:

auto server_pool=
 create_shared_scheduler_proxy(
 new tcp_server_scheduler<lockfree_queue<any_serializable>>
 (workers,"localhost",12345));

Where:
 workers is a scheduler used for (de)serialization of tasks
 localhost and 12345 are the address and port of our server
 We can use post_callback, as always

5
2

Distributing: Job Server with Pool

We can use a composite scheduler instead and rely on stealing to
execute part of the work in the server application itself:

auto composite = create_shared_scheduler_proxy
 (new composite_threadpool_scheduler<any_serializable>
 (worker_pool,server_pool));

Where:
 server_pool is as before
 worker_pool is any threadpool

5
3

Distributing: Simple Job Client

A simple client connects to a server regularly or when its queue
is under a given size and steals job, returning result or exception:

simple_tcp_client_proxy
proxy(comSched,pool,server_address,server_port,executor,
 20 /*ms between calls to server*/);

Where:
 comSched is an asio_scheduler for communication.
 pool is any threadpool for job execution
 server_address/port: where to find the job server
 executor: functor deserializing and executing jobs

5
4

Distributing: Job Client + Server

We can add a server to our client, stealing jobs on client request,
using... a composite:

auto composite =
 create_shared_scheduler_proxy(new
 composite_threadpool_scheduler<any_serializable>
 (pool,tcp_server));

Where:
 pool is the client pool, as just defined
 tcp_server: a tcp_server_scheduler, like our job server

5
5

Building your own network
 A Server Application serves as

primary job server
 ClientMachine1 is a simple job

client
 ClientMachine2 executes jobs

and offers a server part
 ClientMachine2.1 is a simple job

client and steals from ClientMa-
chine2

 There can be more clients
connecting to MainJobServer or
ClientMachine2

 Or maybe one more ClientSer-
verApplication on ClientMachi-
ne2?

5
6

Parallel algorithms

Asynchronous offers a small range of parallel algorithms with
more to come:
 parallel_for
 parallel_reduce
 parallel_invoke
 parallel_find_all
 parallel_extremum
 parallel_count

All are:
 Continuation-based
 Non-blocking
 Distributable
 Work with iterators, ranges, continuations (combinable)

5
7

Parallel algorithms examples

There are four versions of this algorithm. A version with iterators
or range:
post_callback(
 [this]()
 {
 return parallel_for(this->m_data.begin(),this->m_data.end(),
 [](int const& i)
 {
 const_cast<int&>(i) += 2;
 },1500 /*cutoff*/);
 },
 // callback functor.
 // Servant is alive if this is called
 [this](boost::future<void>){/*...*/}
);

The caller must ensure interators stay valid until callback. We get
no result in the future.

5
8

Parallel algorithms examples

Better, let Asynchronous take care of data lifetime:
/*std::vector<int> data;*/
post_callback(
 [data=std::move(data)]()
 {
 return parallel_for(std::move(data),
 [](int const& i)
 {
 const_cast<int&>(i) += 2;
 },1500 /*cutoff*/);
 },
 // callback functor.
 // Servant is alive if this is called
 [this](boost::future<std::vector<int>>){/*...*/}
);

The caller gets the data (possibly modified) back in the future.

5
9

Parallel algorithms examples
Let's combine!
/*std::vector<int> data;*/
post_callback(
 [data=std::move(data)]()
 {
 return parallel_for(parallel_for(std::move(data),
 [](int const& i)
 {
 const_cast<int&>(i) += 2;
 },1500 /*cutoff*/),
 [](int const& i)
 {
 const_cast<int&>(i) += 2;
 },1500 /*cutoff*/);
 },
 [this](boost::future<std::vector<int>>){/*...*/}
);
What happens? A parallel modification of all elements, then when
done, another one. This is not only for parallel_for possible.

6
0

Parallel PI

http://goparallel.sourceforge.net/calculate-pi-with-custom-c-class/

Calculating PI in parallel is an embarassingly parallel problem. We
need to Sum from 0 → N. This can be done by dividing this range in
parts, and execute them in parallel.

The formula fives us a quarter of PI so we still need to multiply by 4.

http://goparallel.sourceforge.net/calculate-pi-with-custom-c-class/

6
1

Parallel PI
struct pi {
 double operator()(long n) {
 return ((double) ((((int) n)% 2 == 0)?1:-1))/((double) (2*n+1));
 }
};
post_callback(
 [this]()
 {
 return invoke(
 /*We start with a parallel_reduce calling operator +*/
 parallel_reduce(
 /*apply pi() to numbers from 0 to COUNT*/
 lazy_irange(0L, COUNT, pi()),
 [](double a, double b) { return a + b; },
 STEP_SIZE),
 /*when done we need to multiply by 4*/
 [](double a) { return a * 4.0; });
 },
 [](boost::future<double>){/*...*/}
);

6
2

Where to find Asynchronous

https://github.com/henry-ch/asynchronous

https://github.com/henry-ch/asynchronous

	The Meta State Machine Library (MSM)
	Contents
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62

