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Introducing Story

 A restaurant as a single employee
 Burgers are put in a queue
 A first customer comes
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Introducing Story

 More customers keep coming
 What to do?
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Introducing Story

 A second employee is hired
 The owner hopes to reduce 

wait times
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Introducing Story

 This brings chaos
 Sometimes employees fight to 

get their customer a burger first
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Introducing Story

 Sometimes they get in each 
other's way

 The line of waiting customers 
grows and grows

 It just does not work
 Costs explode
 Wait times too
 Customers flee the restaurant
 The restaurant gets bankrupt
 Can we avoid this?
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Introducing Story

 We keep a single worker
 The Worker runs really fast from 

cash desk to cash desk, to bur-
gers, drinks, etc.

 The Worker never ever waits
 Instead he remembers in which 

state of the order each customer 
is

 The Worker only reacts to events: 
burger ready, customer picked 
drink, etc.
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Introducing Story

Our Worker in action:
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Why State Machines?

State machines help us:
 Design
 Document
 Debug
 Think asynchronously
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Our Pattern Of The Day

 A Manager implemented as a state machine runs in its own thread
 The Manager is non-blocking.
 Target hardware is controlled asynchronously and lives in other 

threads or machine.

To achieve this we need:
 A state machine library
 Infrastructure to manage asynchronous behavior.
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Asynchronous Programming

std::async / boost::async 

std::future<int> f = std::async([](){return 42;}); // executes asynchronously

int res = f.get(); // wait for result, block until ready

Simple, but...

► Blocking is bad for state machines (no run to completion).

► Blocking prevents diagnostics.

► Blocking makes your program less responsive.

► Blocking reduces opportunities for concurrency.

Waiting is ok, blocking no.

Bonus question, in which thread is lambda executed?
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Asynchronous Programming

std::async / boost::async 

We have for alternatives:
 Block while waiting
 Poll
 Carry a bag of futures then do one of above
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Asynchronous Programming

std::async / boost::async 

Do you spot a problem?

{ 

   std::async(std::launch::async, []{ f(); }); 

   std::async(std::launch::async, []{ g(); });

}

► 2nd line does not run until f() completes

http://en.cppreference.com/w/cpp/thread/launch
http://en.cppreference.com/w/cpp/thread/launch
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Asynchronous Programming

 Better with N3558 / N3650?

future<int> f1 = async([]() { return 123; }); 
future<string> f2 = f1.then([](future<int> f) 
{ 
  return f.get().to_string(); // here .get() won’t block 
});
// and here?

string s= f2.get();
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Asynchronous Programming

Boost.Asio. Example:

// won’t block
boost::asio::async_write(socket_, request_,          
                boost::bind(&client::handle_write_request, this, 
                                   boost::asio::placeholders::error));  

// callback, possibly much later
void handle_write_request(const boost::system::error_code& /*error*/) 
{…} 
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Asynchronous Programming

Boost.Asio. Disadvantages:
 Object lifetime
 Managing asynchrony
 Limited capabilities besides network communication
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Asynchronous Programming

Maybe something like this would be better?

post_callback(
   [](){return 42;}                       // long-lasting task
   [](boost::future<int> res){...} // callback
);

But thread-safe, forwarding exceptions, non-blocking and taking object li-
fetime into consideration.
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Example: CD Player
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Example: CD Player
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Example: CD Player
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Example: CD Player
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Patterns: Active Object

 Makes thread-safe a non-thread-safe object by serializing calls
 Outside world only sees a Proxy
 A Scheduler takes jobs from an ActivationQueue
 Jobs are executed within the Scheduler context
 Active Objects are expensive (a thread per object) 
 Active Objects are not helping parallelize
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Patterns: Proactor

 An Initiator calls an AsynchronousOperation
 A Job is enqueued into a CompletionEventQueue
 An AsynchronousOperationProcessor executes the job
 A Proactor dispatches a CompletionHandler
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Patterns: Thread-Safe Interface

struct Unsafe 
{ 
  void foo() 
  { 
    m_mutex.lock(); 
    foobar();      
    m_mutex.unlock(); 
  } 
private: 
  void foobar() 
  { 
     // we are already locked 
     // when called, 
     // do something while locked 
  } 
  boost::mutex m_mutex; 
}; 

 Public members lock
 Private members do not
 Safe?
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(Boost) Asynchronous

● Will be offered for review (Review Manager?)

● C++11 (will make for interesting discussions...)

● Compiles with g++ >= 4.7 && clang 3.4

● Header only. Will however require linking to Boost.Thread, 

Chrono, DateTime, possibly Serialization.
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Asynchronous: Principles

● Makes you think Tasks, not Threads

● Helps prevents races, deadlocks, crashes

● Executes Tasks asynchronously

● Result of Tasks come as callback

● No Blocking!!! Waiting yes, blocking, no.
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Asynchronous: Definitions

 Scheduler: object having 0..n threads, executing jobs or callbacks. 

Stops threads when destroyed.

 Weak Scheduler: a weak_ptr to a scheduler.

 Servant: object living in a (single-threaded) scheduler, starting 

tasks and handling callbacks.

 Queue: holds jobs for a scheduler to execute

 Servant Proxy: a thread-safe object looking like a Servant and se-

rializing calls to it

 Scheduler Shared Proxy: object holding a scheduler and interfa-

cing with it. The last instance joins the threads of the scheduler.

 Stealing: between threads or schedulers.

 Posting: enqueueing a job into a Scheduler's queue.
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Asynchronous: Lifetime

● Create any number of Servants within a single-thread context

● Servants are visible to outside world through proxies

● The last one needing it stops the thread

● The last proxy joins the thread

● Threadpools allow posting of long-lasting jobs and parallelizing

● And most of all, never ever block!!!
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Features

● Lifetime control

● Proxies

● Interrupting

● Diagnostics

● Continuations

● Distributing

● Parallel Algorithms

● Interaction with Qt / Boost.Asio

● Queues, Threadpools, Task Priority
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Hello, asynchronous world

// a threadpool with 3 threads
auto scheduler =  
   create_shared_scheduler_proxy( new threadpool_scheduler<  
                                                                      lockfree_queue<> >(3));

// post a simple task and wait for result 
boost::shared_future<int> fui = 
   boost::asynchronous::post_future(scheduler, 
                                                         [](){return 42;}); 

int res = fui.get();
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ServantProxy

struct Servant 
{ 
  Servant(int data): m_data(data){} 
  int doIt()const { return 5; } 
  void foobar(int i, char c)const { } 
private:
  int m_data; 
};

 Our servant is a plain, boring class
 We want it to offer two methods „outside“
 The constructor requires data
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ServantProxy

class ServantProxy : 
public servant_proxy<ServantProxy,Servant> { 
public: 
// forwarding constructor. Scheduler to servant_proxy, 
// followed by arguments to Servant. 

template <class Scheduler> 
ServantProxy(Scheduler s, int data): 
servant_proxy<ServantProxy,Servant>(s, data) {} 

// the following members must be available "outside" 
BOOST_ASYNC_POST_MEMBER(foobar) 
// for doIt, we'd like a future
BOOST_ASYNC_FUTURE_MEMBER(doIt)
}; 
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ServantProxy

{
auto scheduler = create_shared_scheduler_proxy(
                    new single_thread_scheduler<lockfree_queue<> >);

        {
            // arguments (here 42) are forwarded to Servant's constructor
            ServantProxy proxy(scheduler,42);
            // post a call to foobar, arguments are forwarded.
            proxy.foobar(1,'a');
            // post and get a future because we're interested in the result.
            boost::shared_future<int> fu = proxy.doIt();

        }// here, Servant's destructor is posted
}// scheduler is gone, its thread has been joined
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Threadpool

struct Servant : trackable_servant<>
{
    Servant(any_weak_scheduler<> scheduler)
        : trackable_servant<>
                 (scheduler,create_shared_scheduler_proxy(new 
                                threadpool_scheduler<lockfree_queue<> >(3)))
//...
};

 We now equip our servant with a threadpool
 The threadpool has 3 threads
 The servant knows his own (weak) scheduler for callbacks
 We can now make use of post_callback
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post_callback

post_callback(
               // possibly long work, executes in threadpool, if servant alive
               [](){return 42;},
               // callback functor. Executes in Servant's context
               // Servant is alive if this is called
               [this](boost::future<int> res){/*...*/}
);

 Work task is posted to threadpool
 Work task executed if Servant is still alive
 Callback executed if Servant is still alive
 Using this in callback is safe
 Return value or exception from task in future
 Future is non-blocking
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Interrupting

Why to interrupt?

 Exploding algorithms
 System is drowning
 No need of result any more
 Requires support from Task itself
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Interrupting
any_interruptible interruptible =
    interruptible_post_callback(
               // task
               [](){       
                        // boost::this_thread::sleep is an interruption point    
                        boost::this_thread::sleep  
                              (boost::posix_time::milliseconds(1000));},
               // callback functor.
               // most likely will not be called
               [this](boost::future<void> res){/*...*/}
);
interruptible.interrupt();

 Work task is posted to threadpool
 Immediately after we try to interrupt
 Sleep is a documented interruption point for boost::thread and 

most likely will be interrupted
 Callback will not be called
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Logging

Why do we need this?

 Find bottlenecks
 Find out inefficiencies in tasks
 Find concurrency opportunities
 Find out which tasks can be started earlier 

Logging + state machines in an Active Object are your friends.
You will know:
 Where is your bottleneck
 Which tasks are worth parallelizing
 How long you spent in a state
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Logging
// we need a job type
typedef any_loggable<chrono::high_resolution_clock> servant_job;

// we need our servant to make use of it
struct Servant : trackable_servant<servant_job,servant_job>

post_callback(
               [](){return 42;},
               [this](boost::future<int> res){/*...*/},
               // job / callback name
               "int_async_work"
);
// we also have a new macro
BOOST_ASYNC_FUTURE_MEMBER_LOG(foo,"foo")
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Logging

Calling get_diagnostics() on a scheduler proxy will give us:

 get_posted_time() → Clock::time_point
 get_started_time() → Clock::time_point
 get_finished_time() → Clock::time_point
 is_interrupted() → bool
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Schedulers / Stealing

Asynchronous has a small range of schedulers:

 single_thread_scheduler: one queue, one thread
 asio_scheduler: one io_service per thread
 threadpool_scheduler: one queue, 0..n threads
 multiqueue_threadpool_scheduler: 1..n queues and threads. 

Threads steal from each others' queues

For the last 2, we have a stealing_xxx version, for use in a
composite_threadpool_scheduler, bundling them so they can 
steal from each other, according to their priority:

auto tp = create_shared_scheduler_proxy(new  
    multiqueue_threadpool_scheduler<lockfree_queue<>> (1));
auto tp2 = create_shared_scheduler_proxy(new  
   stealing_multiqueue_threadpool_scheduler<lockfree_queue<>> (3));
auto tp_worker = create_shared_scheduler_proxy(new  
                                   composite_threadpool_scheduler<> (tp,tp2,...));
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Priorities
 Queue priority: to which queue we post a task:

auto scheduler = 
  create_shared_scheduler_proxy(new single_thread_scheduler<
         any_queue_container<>>
              (any_queue_container_config<threadsafe_list<>>(1),
               any_queue_container_config<lockfree_queue<> >(3)));

 Scheduler priority: to which scheduler of a composite we post a 
task, either directly or through an extra post_callback argument:

post_callback(
               [](){},
               [](boost::future<void>){},
               "",
               1, // threadpool prio
               0  // callback prio
);
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Interacting with Qt

 Make your servant inherit qt_servant
struct QtServant : public QObject
                           , public qt_servant<>

 Use post_callback, as always
post_callback(
               [](){return 42;},
               [this](boost::future<int> res){/*...*/},);

Advantages:
• All of Asynchronous' threadpools available
• Logging, interrupting of tasks possible
• Algorithms, Distributing, etc.
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Continuations

 For recursive tasks (Fibonacci)
 Or for future(s) gotten from whatever task / library

=> create a continuation, called when all tasks are done

Advantages:
 Simple to use
 Works with futures
 Support exceptions
 recursive

Disadvantage:
 Becomes very fast messy. Solution: state machines...
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Continuations

struct fib_task : continuation_task<long>
{
    fib_task(long n,long cutoff):n_(n),cutoff_(cutoff){}
    void operator()()const
    {
        // the result of this task
        // or an exception
        continuation_result<long> task_res = this_task_result();
        if (n_<cutoff_)
        {
            // n < cutoff => execute ourselves
            task_res.set_value(serial_fib(n_));
        }
        else
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Continuations
        {
            // n_ >= cutoff create 2 new tasks
            create_continuation(
                     // called when subtasks are done, set our result
                     [task_res]
                     (std::tuple<boost::future<long>,boost::future<long>> res)
                     {
                        try{                        
                           long r = std::get<0>(res).get() + std::get<1>(res).get();
                           task_res.set_value(r);
                        }
                        catch(std::exception& e){                        
                            task_res.set_exception(boost::copy_exception(e));}   
                     },
                     // recursive tasks
                     fib_task(n_-1,cutoff_),
                     fib_task(n_-2,cutoff_));
        }
    }
    long n_;long cutoff_;
};
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Continuations

post_callback(
         [n,cutoff]()
         {
              // a top-level continuation is the first one 
              // in a recursive serie.
              // Its result will be passed to callback
              return top_level_continuation<long>(fib_task(n,cutoff));
          },
          // callback with fibonacci result.
          [this](boost::future<long> ){/*...*/}
        );
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Continuations

We have more possibilities:

● create_continuation(
[](std::vector<boost::future<int>>){},
std::move(fus)); // fu is std::vector<boost::future<int>>

● create_continuation(
[](std::tuple<boost::future<int>,boost::future<int>>){},
std::move(fu1),std::move(fu2)); 
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Distributing: Job Server

Preconditions:

 Task is serializable, as defined by Boost.Serialization
 Return value or exception is serializable

We have a new scheduler, used as a threadpool:

auto server_pool= 
  create_shared_scheduler_proxy( 
  new tcp_server_scheduler<lockfree_queue<any_serializable>>
           (workers,"localhost",12345));

Where:
 workers is a scheduler used for (de)serialization of tasks
 localhost and 12345 are the address and port of our server
 We can use post_callback, as always 
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Distributing: Job Server with Pool

We can use a composite scheduler instead and rely on stealing to 
execute part of the work in the server application itself:

auto composite = create_shared_scheduler_proxy
      (new composite_threadpool_scheduler<any_serializable>
                    (worker_pool,server_pool));

Where:
 server_pool is as before
 worker_pool is any threadpool



5
3

Distributing: Simple Job Client

A simple client connects to a server regularly or when its queue 
is under a given size and steals job, returning result or exception:

simple_tcp_client_proxy 
proxy(comSched,pool,server_address,server_port,executor,
          20 /*ms between calls to server*/);

Where:
 comSched is an asio_scheduler for communication.
 pool is any threadpool for job execution
 server_address/port: where to find the job server
 executor: functor deserializing and executing jobs
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Distributing: Job Client + Server

We can add a server to our client, stealing jobs on client request, 
using... a composite:

auto composite =
     create_shared_scheduler_proxy(new 
             composite_threadpool_scheduler<any_serializable>
                                                                      (pool,tcp_server));

Where:
 pool is the client pool, as just defined
 tcp_server: a tcp_server_scheduler, like our job server
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Building your own network
 A Server Application serves as 

primary job server
 ClientMachine1 is a simple job 

client
 ClientMachine2 executes jobs 

and offers a server part
 ClientMachine2.1 is a simple job 

client and steals from ClientMa-
chine2

 There can be more clients 
connecting to MainJobServer or 
ClientMachine2

 Or maybe one more ClientSer-
verApplication on ClientMachi-
ne2?
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Parallel algorithms

Asynchronous offers a small range of parallel algorithms with 
more to come:
 parallel_for
 parallel_reduce
 parallel_invoke
 parallel_find_all
 parallel_extremum
 parallel_count

All are:
 Continuation-based
 Non-blocking
 Distributable
 Work with iterators, ranges, continuations (combinable)
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Parallel algorithms examples

There are four versions of this algorithm. A version with iterators 
or range:
post_callback(
     [this]()
    {
        return parallel_for(this->m_data.begin(),this->m_data.end(),
                                      [](int const& i)
                                      {
                                           const_cast<int&>(i) += 2;
                                       },1500 /*cutoff*/);
     },
     // callback functor.
     // Servant is alive if this is called
     [this](boost::future<void> ){/*...*/}
 );

The caller must ensure interators stay valid until callback. We get 
no result in the future.



5
8

Parallel algorithms examples

Better, let Asynchronous take care of data lifetime:
/*std::vector<int> data;*/
post_callback(
     [data=std::move(data)]()
    {        
        return parallel_for(std::move(data),
                                      [](int const& i)
                                      {
                                           const_cast<int&>(i) += 2;
                                       },1500 /*cutoff*/);
     },
     // callback functor.
     // Servant is alive if this is called
     [this](boost::future<std::vector<int>> ){/*...*/}
 );

The caller gets the data (possibly modified) back in the future.
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Parallel algorithms examples
Let's combine!
/*std::vector<int> data;*/
post_callback(
     [data=std::move(data)]()
    {
        return parallel_for(parallel_for(std::move(data),
                                                        [](int const& i)
                                                       {
                                                           const_cast<int&>(i) += 2;
                                                       },1500 /*cutoff*/),
                                       [](int const& i)
                                      {
                                           const_cast<int&>(i) += 2;
                                       },1500 /*cutoff*/);
     },
     [this](boost::future<std::vector<int>> ){/*...*/}
 );
What happens? A parallel modification of all elements, then when 
done, another one. This is not only for parallel_for possible.
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Parallel PI

http://goparallel.sourceforge.net/calculate-pi-with-custom-c-class/

Calculating PI in parallel is an embarassingly parallel problem. We 
need to Sum from 0 → N. This can be done by dividing this range in 
parts, and execute them in parallel. 

The formula fives us a quarter of PI so we still need to multiply by 4.

http://goparallel.sourceforge.net/calculate-pi-with-custom-c-class/
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Parallel PI
struct pi {
   double operator()(long n) {
        return ((double) ((((int) n)% 2 == 0)?1:-1))/((double) (2*n+1));
    }
};
post_callback(
     [this]()
    {
        return invoke(
                /*We start with a parallel_reduce calling operator +*/
                parallel_reduce(
                                          /*apply pi() to numbers from 0 to COUNT*/
                                          lazy_irange(0L, COUNT, pi()), 
                                          [](double a, double b) { return a + b; }, 
                                          STEP_SIZE),
                /*when done we need to multiply by 4*/
                [](double a) { return a * 4.0; });
     },
     [](boost::future<double> ){/*...*/}
 );
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Where to find Asynchronous

https://github.com/henry-ch/asynchronous

https://github.com/henry-ch/asynchronous
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