
1

11

Beware of C++

C++Now 2014, Aspen

Nicolai M. Josuttis

2

1997

 My first C++ Standardization Meeting in London

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

2

3

Disclaimer

 English is not my native language

 You probably know C++ better than me

 I can be very slow

 But I am pedantic

 I will raise more questions than I answer

4

1998

 Final wording of "The C++ Standard Library" (1st ed.)

Nico: What's up with this C++ library site?

Beman: It is a bit slow getting the site going.

Nico: You have to decide: Shall I mention boost?

Beman: OK, do it (seems I will have more time)

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

3

5

Process for New Libraries

6

Process for New Core Features

Compilers?

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

4

8

C++ Timeframe

10

C++ Timeframe

3/2011:
Final draft (FDIS)
for ballot

3/2010:
new keyword
noexcept

8/2010:
final core
clarifications
on noexcept

3/2009:
Houston, we
have a problem!

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

5

11

C++ Timeframe

3/2011:
Final draft (FDIS)
for ballot

3/2010:
new keyword
noexcept

8/2010:
final core
clarifications
on noexcept

3/2009:
Houston, we
have a problem!

“Where to use
noexcept in
the library?”

12

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

6

13

14

noexcept Policy according to N3279

• Each library function

– having a wide contract
[i.e. does not specify undefined behavior due to a precondition],

– that the LWG agree cannot throw,
should be marked as unconditionally noexcept.

• If a library swap function, move constructor, or move assignment
operator ...

– can be proven not to throw by applying the noexcept operator
then it should be marked as conditionally noexcept.

No other function should use a conditional noexcept specification.

• No library destructor should throw. It shall use the implicitly supplied
(non-throwing) exception specification.

• Library functions designed for compatibility with C code ... may be
marked as unconditionally noexcept.

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

7

15

noexcept Policy according to N3279

• Each library function

– having a wide contract
[i.e. does not specify undefined behavior due to a precondition],

– that the LWG agree cannot throw,
should be marked as unconditionally noexcept.

• If a library swap function, move constructor, or move assignment
operator ...

– can be proven not to throw by applying the noexcept operator
then it should be marked as conditionally noexcept.

No other function should use a conditional noexcept specification.

• No library destructor should throw. It shall use the implicitly supplied
(non-throwing) exception specification.

• Library functions designed for compatibility with C code ... may be
marked as unconditionally noexcept.

As asked here already:
Is there any useful example
(in the library)
for a move operation
that might throw?

16

noexcept Policy for the Standard Library

• C++11/C++14 follows this policy mostly

For a simple example:

template<...>
class basic_string {
public:
basic_string (basic_string&&) noexcept; // move constructor
basic_string& operator= (basic_string&&) noexcept; // move assignment
...

};

According to Library Issue 2319
there is a proposal for C++17 to remove the
noexcept requirement for the move constructor
to give debugging implementations freedom to
allocate data during a move

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

8

17

noexcept Policy for the Standard Library

• Standard containers don't define their move
operations as explicit yet

For example:

template <class T, class Allocator = allocator<T> >
class vector {
public:

vector (vector&&); // no noexcept

vector& operator= (vector&& x); // no noexcept

...
};

18

Test by HH [c++std-lib-35804]

#include <vector>
#include <string>
#include <chrono>
#include <iostream>
using namespace std;
using namespace std::chrono;

class X
{
private:
string s;

public:
X()
: s(100, 'a') {
}

X(const X& x) = default;

X (X&& x) NOEXCEPT
: s(move(x.s))
{
}

};

int main()

{

vector<X> v(1000000);

cout << "cap.: " << v.capacity() << endl;

auto t0 = high_resolution_clock::now();

v.emplace_back();

auto t1 = high_resolution_clock::now();

auto d = duration_cast<milliseconds>(t1–t0);

cout << d.count() << " ms\n";

}

• program slightly modifiedclang++ -std=c++11 test.cpp -O3 -DNOEXCEPT="noexcept"

is 10 times faster than

clang++ -std=c++11 test.cpp -O3 -DNOEXCEPT=""

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

9

19

#include <vector>
#include <string>
#include <chrono>
#include <iostream>
using namespace std;
using namespace std::chrono;

class X
{
private:
string s;

public:
X()
: s(100, 'a') {
}

X(const X& x) = default;

X (X&& x) NOEXCEPT
: s(move(x.s))
{
}

};

int main()

{

vector<X> v(1000000);

cout << "cap.: " << v.capacity() << endl;

auto t0 = high_resolution_clock::now();

v.emplace_back();

auto t1 = high_resolution_clock::now();

auto d = duration_cast<milliseconds>(t1–t0);

cout << d.count() << " ms\n";

}

no noexcept noexcept

clang++ 1,000,000 228 - 239 ms 19 - 22 ms

g++49 1,000,000 15 – 31 ms 0 ms

g++49 10,000,000 234 – 249 ms 15 – 31 ms

g++49 100,000,000

Test by HH [c++std-lib-35804]

no noexcept noexcept

clang++ 1,000,000 228 - 239 ms 19 - 22 ms

g++49 1,000,000 15 – 31 ms 0 ms

g++49 10,000,000 234 – 249 ms 15 – 31 ms

g++49 100,000,000 core dump core dump

different
machines!
different

machines!

20

Open
 Which containers should have noexcept move operations?

– string and vector!

– deque, list, associative, unordered?

 Should we specify this in the standards as
– required?

– required for release mode?

 Should we have semantics for a definition of
"strongly encouraged to be noexcept"?
– The proposals for the FORM were so far:

• some form of special written noexcept (italics or so)

• /*noexcept*/

• [[noexcept]]

• some form of noexcept(NDEBUG)

• noexcept(probably)

• throw(unlikely)

• [[have_mercy]]

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

10

21

Additional noexcept Guideline?

• If the move constructor
has a noexcept specification,

the default constructor
should have a noexcept specification

• STL [c++std-lib-35831] :
– Note that default ctors and move ctors are twins when it comes to

noexcept - either both should be marked, or neither.

– This is nearly a fundamental law - if an object always needs to
acquire a resource even in its default-constructed state, then the
move ctor also needs to acquire such a resource (because you
start with one object and end with two), in order to avoid emptier-
than-empty.

– But if an object can be default constructed noexceptly, then move
construction can be implemented with default construction and
nofail swap.

22

Additional noexcept Guideline?

• But, HH [c++std-lib-35836] :
– There is a caveat here though.

– I can not find anywhere in the allocator requirements that if the allocator
is default_constructible, that it is nothrow_default_constructible.

– We have two choices:
1. Require that allocators be either

!is_default_constructible<A>{} || is_nothrow_default_constructible<A>{}.

2. vector{} is noexcept only if Allocator{} is noexcept.
[Note: std::allocator{} is already noexcept].

I prefer 2. It gives allocator authors more latitude for negligible cost.

– Also we currently specify vector{} like so:
vector() : vector(Allocator()) { }

It would be so much better to specify it with:
vector() noexcept(is_nothrow_default_constructible<allocator_type>{})

I.e. not require (nor even encourage) an allocator copy construction.

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

11

23

Additional noexcept Guideline?

• But, PD [c++std-lib-35832] :

– In my opinion, the current wide/narrow practice is wrong.

– It's wrong on a conceptual level, because (almost) no function is
actually wide. All functions have implicit requirements that their
arguments, *this, and everything else reachable from them be a valid
object. (Or, in the case of a constructor, that 'this' points to storage
suitable to hold an object.)

– It's also wrong because it sets up a conflict.
When specifying, say, operator*, we now need to make a choice
between adding a Requires clause and a noexcept, the two being
mutually exclusive under the wide/narrow theory.
This does not improve the quality of the specification.

24

 It is key to have guidelines
for how to use C++ Core
Features

 Ideally, together with each
new core feature

 But

– guidelines require experience

– are living documents

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

12

29

Initializer Lists and explicit

class P
{

public:
P(int = 0);
explicit P(std::initializer_list<int>);

};

void foo(const P&);

foo (); // ERROR
foo (47); // OK
foo ({}); // OK !
foo ({42}); // ERROR due to explicit
foo ({42,43}); // ERROR due to explicit
foo ({42,43,44}); // ERROR due to explicit
foo (P{42,43,44}); // OK, explicit conversion

P a(77); // OK
P b{77}; // OK
P c = 77; // OK
P d = {}; // OK !
P e = { 42 }; // ERROR due to explicit
P f = { 77,88 }; // ERROR due to explicit

33

Initializer Lists and explicit

class P
{

public:
explicit P(int = 0);
P(std::initializer_list<int>);

};

P a; // OK, calls P::P(int)
P b(42); // OK, calls P::P(int)
P c = 42; // ERROR

P d {}; // OK, calls P::P(int) (calls P::P(initializer_list) without def. constr.)
P e { 77 }; // OK, calls P::P(initializer_list)
P f { 77, 5 }; // OK, calls P::P(initializer_list)

P g = {}; // ERROR (calls P::P(initializer_list) without default constructor)
P h = { 77 }; // OK, calls P::P(initializer_list)
P i = { 77, 5 }; // OK, calls P::P(initializer_list)

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

13

34

Library Issue 2193

template <class T, class Allocator = allocator<T> >
class vector {
public:

explicit vector(const Allocator& = Allocator());
explicit vector(size_type n);
vector(size_type n, const T& value, const Allocator& = Allocator());
template <class InputIterator>

vector(InputIterator first, InputIterator last, const Allocator& = Allocator());
vector(const vector<T,Allocator>& x);
vector(initializer_list<T>, const Allocator& = Allocator());
...

};

vector<int> v1 = { 1, 2 }; // OK
vector<int> v2 = { 1 }; // OK
vector<int> v3 = {}; // ERROR

template <typename ...T>
void g (T... t) {
vector<int> v = { t... }; // OK for g(1), g(1,2), g(1,2,3), ... but ERROR for g()

}

Resolution for C++14:
Split constructors:
explicit vector();
explicit vector(const Allocator&);

Thanks to Jonathan Wakely and
Marshall Clow for this example

35

Guidelines for explicit ?

• The default constructor should never be explicit
– If all arguments of an explicit constructor have default values,

declare the default constructor separately

• An initializer list constructor should never be explicit

• Any other constructor should be explicit,
if
– parameters affect behavior instead of core content

• Shouldn't the default constructor always be its own beast?

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

14

36

We still have more explicit initialization Mess
template <class... Types>

class tuple {

public:

constexpr tuple();

explicit constexpr tuple(const Types&...);

template <class... UTypes>

explicit constexpr tuple(UTypes&&...);

tuple(const tuple&) = default;

tuple(tuple&&) = default;

template <class... UTypes>

constexpr tuple(const tuple<UTypes...>&);

template <class... UTypes>

constexpr tuple(tuple<UTypes...>&&);

template <class U1, class U2>

constexpr tuple(const pair<U1, U2>&); // only if sizeof...(Types) == 2

template <class U1, class U2>

constexpr tuple(pair<U1, U2>&&); // only if sizeof...(Types) == 2

template <class Alloc>

tuple(allocator_arg_t, const Alloc& a);

template <class Alloc>

tuple(allocator_arg_t, const Alloc& a, const Types&...);

template <class Alloc, class... UTypes>

tuple(allocator_arg_t, const Alloc& a, UTypes&&...);

template <class Alloc>

tuple(allocator_arg_t, const Alloc& a, const tuple&);

template <class Alloc>

tuple(allocator_arg_t, const Alloc& a, tuple&&);

template <class Alloc, class... UTypes>

tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&);

template <class Alloc, class... UTypes>

tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&&);

template <class Alloc, class U1, class U2>

tuple(allocator_arg_t, const Alloc& a, const pair<U1, U2>&);

template <class Alloc, class U1, class U2>

tuple(allocator_arg_t, const Alloc& a, pair<U1, U2>&&);

Class tuple<>
has
18 constructors

37

Guidelines for constexpr ?

• The current situation is a complete mess

• Some recent quotes from the reflector:
– Constexpr is not for optimization. The compilers can inline well already.

– Use constexpr when guaranteed static initialization is important. E.g. the
construction of global atomics really cannot be deferred to run time.

– Use constexpr when you anticipate using the results to define array sizes
or appear within template non-type arguments.

– I think that "making everything possible constexpr" is borderline insane. It
leads to unnecessarily increased compile times, potential code bloat, and
wishes to overload on constexpr so that we can select different algorithms
for compile time and run time.

– By all means "be generous," but use constexpr only when there is a
potential need for guaranteed compile-time evaluation.

– Beneficial uses of constexpr on non-trivial computations aren't always
obvious from past experience.

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

15

38

Guidelines for constexpr ?

• Some recent quotes from the reflector (cont.):
– There seems to be a "potential" need for everything that can be constexpr

to be constexpr. How do we gain confidence that nobody's going to need
to use some function in a static initializer?

– I saw someone asking if main() could be constexpr.

– It will not be easy to draw a simple and clear line between constexpr and
non-constexpr in the library, but I think we have to try. We are supposed to
be experts, so we should be better at drawing a line than the average
programmer.

– constexpr can always be added later when there is empirical evidence
showing benefit.

– The problem is, when us experts get it wrong, everyone else waits years
for us to release a fix. As per our vote in Chicago, vendors are not allowed
to offer a fixed version as a conforming extension.

– Yes, I don't think it is a question we can ignore, but for a solution to
become a rule someone has to propose something and gather a
consensus.

39

 Which function has changed
with each and every
C++ Standard,
so that we have 4 different
definitions now ?

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

16

40

make_pair() in C++98

namespace std {
// implementation according to C++98:

template <typename T1, typename T2>
pair<T1,T2> make_pair (const T1& x, const T2& y) {
return pair<T1,T2>(x,y);

}

}

std::make_pair (42, "hi") // => std::pair<int,const char[3]>

41

Trying:
namespace std {

template <typename T1, typename T2>
pair<T1,T2> make_pair (const T1& x,

const T2& y) {
return pair<T1,T2>(x,y);

}

}

int main()

{

std::map<int,std::string> m;

if (*m.begin() == std::make_pair(42,"hi")) {
;

}

}

=> Error message with 238 rows

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

17

42

43

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

18

44

make_pair() in C++03

namespace std {
// implementation according to C++03:

template <typename T1, typename T2>
pair<T1,T2> make_pair (T1 x, T2 y) { // by value !
return pair<T1,T2>(x,y);

}

}

std::make_pair (42, "hi") // => std::pair<int,const char*>

45

make_pair() in C++11

• std::make_pair() shall support move semantics
=> rvalue references have to be used
=> we have the decay problem again
=> we have to fix that problem with std::decay<>

namespace std {
// implementation according to C++11:
template <typename T1, typename T2>
constexpr pair<typename std::decay<T1>::type,

typename std::decay<T2>::type>
make_pair (T1&& x, T2&& y) {

return pair<typename std::decay<T1>::type,
typename std::decay<T2>::type>(std::forward<T1>(x),

std::forward<T2>(y));
}

}

std::make_pair (42, "hi") // returns a std::pair<int,const char*>

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

19

46

make_pair() in C++11

• std::make_pair() shall support move semantics
=> rvalue references have to be used
=> we have the decay problem again
=> we have to fix that problem with std::decay<>

namespace std {
// implementation according to C++11:
template <typename T1, typename T2>
constexpr pair<typename std::decay<T1>::type,

typename std::decay<T2>::type>
make_pair (T1&& x, T2&& y) {

return pair<typename std::decay<T1>::type,
typename std::decay<T2>::type>(std::forward<T1>(x),

std::forward<T2>(y));
}

}

std::make_pair (42, "hi") // returns a std::pair<int,const char*>

Note:
std::decay<> in addition strips
cv-qualifiers from class types

47

make_pair() in C++14

• std::decay_t<>
• no change in semantics

namespace std {
// implementation according to C++14:
template <typename T1, typename T2>
constexpr pair<std::decay_t<T1>,

std::decay_t<T2>>
make_pair (T1&& x, T2&& y) {
return pair<std::decay_t<T1>,

std::decay_t<T2>>(std::forward<T1>(x),
std::forward<T2>(y));

}
}

std::make_pair (42, "hi") // returns a std::pair<int,const char*>

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

20

48

Using the RET Trick

• E.g. used in gcc in some places
• Danger: programmers are sneaky little buggers and may

explicitly provide the third type
– except for constructors

namespace std {
template <typename T1, typename T2,

typename RET = pair<std::decay_t<T1>,
std::decay_t<T2>>>

RET make_pair (T1&& x, T2&& y) {
return RET(std::forward<T1>(x),std::forward<T2>(y));

}
}

Thanks to Jonathan Wakely

49

Dealing with Templates

• For all these C++ templates (and xml, html, ...) it helps to
see matching angle brackets:

template <typename T1, typename T2,
typename RET = pair<std::decay_t<T1>,

std::decay_t<T2>>>

• VIM: In .vimrc:
" match pairs of < and >

autocmd FileType cpp set mps+=<:>

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

21

50

Guidelines for Template Parameters?
 If you know that the object is always cheap to copy

then pass by value.

 If it might not be cheap to copy, you have to make a choice:

– If the expected type is likely to be an rvalue and is moveable, then
you call by value so that the caller passes temporaries or uses
move

– If it's not cheap to copy and not moveable, then still take by value
and let the caller use std::ref()

– Otherwise use const lvalue reference
• Think about whether and where to decay

 If you return something in the argument, use a non-const lvalue
reference

 If you have to pass move semantics into other parts of the
called function, declare as universal reference and forward<>

– Think about whether and where to decay

aerix consulting

Passing and Returning in C++11

Category C++11 Recommendation
Input

small & “sink” Pass by value
all others Pass by const ref

Output Return by value
Input/Output Pass by non-const ref (?)

51Copyright 2013 Aerix Consulting

Eric Niebler @ C++Now May 14, 2014:

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

22

aerix consulting

Passing and Returning in C++11

Category C++11 Recommendation
Input

small & “sink” Pass by value
all others Pass by const ref

Output Return by value
Input/Output Use a stateful algorithm object (*)

52Copyright 2013 Aerix Consulting

(*) Initial state is a sink argument to the constructor

Eric Niebler @ C++Now May 14, 2014:

53

 It is key to have guidelines
for how to use C++ Core
Features

 Ideally, before we have to
adapt them in the library

 That's way before Scott or
Herb write books about them!

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

23

54

We need guidelines for
 noexcept

– new version

 explicit

– I plan to provide a first draft

 constexpr

 template parameters

 ...

55

 Same guidelines
for different
groups?

 Which group has
to know and
understand
which detail?

Foundation Library Implementers

Library Implementers

Class/Utilities Implementers

Application Programmers

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

24

56

Beware of C++

 Which problems of this talk
should the ordinary C++
programmer know?

Too much!

57

Nicolai M. Josuttis

www.josuttis.com

nico@josuttis.com

Nicolai M. Josuttis Beware of C++

Copyright 2014 by N. Josuttis

