Nicolai M. Josulttis Beware of C++

Nicolal M. Josuttis

Beware of C++

C++Now 2014, Aspen

josuttis | eckstein

1997

B My first C++ Standardization Meeting in London

josuttis | eckstei/

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis Beware of C++

Disclaimer

® English is not my native language

B You probably know C++ better than me
M | can be very slow

M But | am pedantic

M | will raise more questions than | answer

josuttis | eckstein

1998

B Final wording of "The C++ Standard Library" (15t ed.)
Nico: What's up with this C++ library site?
Beman: Itis a bit slow getting the site going.
Nico: You have to decide: Shall | mention boost?
Beman: OK, do it (seems | will have more time)

See the Boost repository for C++ libraries at http://www.boost .org/ for a collection of dif-
ferent smart pointer classes as an extension of the C++ standard library. (Class CountedPtr<> will
probably be called shared_ptr<>.)

LB EIEN) eI) COMPUSE_1L_BX_NX | COmpuses

£ (gleleml) ,hieleml)) | compose_f_gx_hy

Table 8.5. Possible Names of Compose Function Object Adaprters

Look at the Boost repository for C++ libraries at http://www.boost.org/ for the names that
should be used in the future and for a complete implementation of all of them. In the next few
subsections I discuss three of them — those that I need most often.

josuttis | eckstein

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis Beware of C++

Process for New Libraries

WG21 - Full Committee Approval

Library WG Wording

: : , Design &
Evolution WG Lib Evolution WG Target (IS/TS)

Concurrency Modules Filesystem Metworking Tx. Memory . .
SG6 SG SG8 SG9 $G10 Investigation &
Numerics Reflection Ce s Ranges Feature Test Deve|opment
SG11 SG12 SG13
U. Behavior

Databases

Graphics

josuttis | eckstein

Process for New Core Features

WG21 - Full Committee Approval

CoreWG K___J Library WG Wording
: : , Design &
Evolution WG Lib Evolution WG Target (1S/TS)

Z 2

SG2 SG3

Modules Filesystem

SG5

Tx. Memory

SG1 SG4
Concurrency Metworking

SG6 SG7 SG8 SGY SG10]nvest:gatlon &
Numerics Reflection Concepts Ranges Feature Test Deve| Opmen‘t

SG11

SG13

Databases

SG12
U. Behavior

e

josuttis | eckstein

Graphics

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis

Beware of C++

C++ Timeframe

C++98 C++03 C++11 C++14 C++17
(major) (TC, bug fixes only) (major) (minor) (major)
98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 1617 18

e
2]
i1

|

Library TR (aka TS)

Performance TR

File System TS
Lib Fundamentals TS + more work coming
(TM, modules, ...)

Networking TS

Concepts TS= Parallelism TS

Array Exts. TS Concurrency TS

josuttis | eckstein

C++ Timeframe

8/2010:
final core

clarifications
on noexcept

C++03
g fixes only)

3/2010:
new keyword
noexcept

2 03 04 05 06 07 08 09 10 11 12 13

3/2009:
L| Houston, we
have a problem!

josuttis | eckstein

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis

Beware of C++

“Where to use
noexcept in »010: ?if;gre

the library?” W keyword clarifications

\ ON noexcept)

imeframe

2 03 04 [N 10 11 2l

\\\
| \
3/2011:

Final draft (FDIS)
for ballot

L
b

josuttis | eckstein

Document: N3248=11-0018

Date: 2011-02-28

Authors: Alisdair Meredith (ameredithl@bloomberg.net)
John Lakos (jlakos@hloomberg.net)

Abstract

The noexcept language facility was added at the Pittsburg meeting immediately prior to

the FCD to solve some very specific problems with move semantics. This new facility
also addresses a long-standing desire for many libraries to flag which functions can
and cannot throw exceptions in general, opening up optimization opportunities.

The Library Working Group is now looking for a metric to decide when it is appropriate

to apply the ncexcept facility, and when to be conservative and say nothing. After
spending some time analyzing the problem, the authors have concluded that the
current specification for noexcept greatly restricts the number of places it can be used
safely in a library specification such as (but not limited to) the standard library.

In this paper we propose a strict set of criteria to test before the Library Working Group
should mark a function as noexcept. We further propose either lifting the requirement
that throwing exceptions from a noexcept function must terminate a program (in favor
of general undefined behavior), or adopting additional criteria that severely restrict the
use of noexcept in the standard library.

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis Beware of C++

Conservative use of noexcept in the
Library

Document: N3279=11-0049

Date: 2011-03-25

Authors: Alisdair Meredith (ameredithl@bloomberg.net)
John Lakos (jlakos@bloomberg.net)

Motivation

The paper N3248 raised a number of concerns with widespread adoption of ncexcept
exception specifications in the standard library specification, preferring their use be
left as a library vendor quality-of-implementation feature until we have more
experience.

Further discussion at the Madrid meeting, 2011, showed that while the committee
shared some of these concerns, it also wanted to promote the use of such exception
specifications where they provided a benefit, and did no harm.

After some discussion, the following set of guidelines for appropriate use of nosxcept
in a library specification were adopted. The rest of this paper applies these guidelines
to the working paper N3242.

noexcept Policy according to N3279

» Each library function

— having a wide contract
[i.e. does not specify undefined behavior due to a precondition],

— that the LWG agree cannot throw,
should be marked as unconditionally noexcept.

* If a library swap function, move constructor, or move assignment
operator ...
— can be proven not to throw by applying the noexcept operator
then it should be marked as conditionally noexcept.

No other function should use a conditional noexcept specification.

* No library destructor should throw. It shall use the implicitly supplied
(non-throwing) exception specification.

* Library functions designed for compatibility with C code ... may be
marked as unconditionally noexcept.

josuttis | eckstein

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis

Beware of C++

noexcept Policy accordi

As asked here already:
» Each library function Is there any useful example

— having a wide contract Sonr ?fnl(i)?/;a(r)y)eration
[i.e. does not specify undefined beh P

that might throw?
— that the LWG agree cannot throw,
should be marked as unconditionally noex

* If a library swap function, move constructor, or move assignment
operator ...

— can be proven not to throw by applying the noexcept operator
then it should be marked as conditionally noexcept.

No other function should use a conditional noexcept specification.

* No library destructor should throw. It shall use the implicitly supplied
(non-throwing) exception specification.

* Library functions designed for compatibility with C code ... may be
marked as unconditionally noexcept.

josuttis | eckstein

noexcept Policy for the Standard Library

* C++11/C++14 follows this policy mostly

For a simple example:

template<...>

class basic_string {

public:
basic_string (basic_string&&) noexcept; /I move constructor
basic_string& operator= (basic_string&&) noexcept; // move assignment

¥

According to Library Issue 2319

there is a proposal for C++17 to remove the
noexcept requirement for the move constructor
to give debugging implementations freedom to
allocate data during a move

josuttis | eckstein

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis Beware of C++

noexcept Policy for the Standard Library

e Standard containers don't define their move
operations as explicit yet

For example:

template <class T, class Allocator = allocator<T> >
class vector {
public:
vector (vectoré&&); /I no noexcept
vector& operator= (vector&& x); [/ no noexcept

josuttis | eckstein

Test by HH [c++std-lib-35804]

#include <vector> int mainQ)
#include <string> {
#include <chrono> vector<x> v(1000000);

#include <iostream>
using namespace std;
using namespace std::chrono;

cout << "cap.: " << v.capacity() << endl;

auto tO = high_resolution_clock: :now(Q);

class X v.emplace_back();
{ auto tl1 = high_resolution_clock::now(Q);
private:
string s; auto d = duration_cast<milliseconds>(t1-t0);
pugz;c: cout << d.count() << " ms\n";
: s(100, "a") { b
}

X(const X& x) = default;
clang++ -std=c++11 test.cpp -O3 -DNOEXCEPT="noexcept"

X (X&& x) NOEXCEPT : ;
: s(move(x.s)) is 10 times faster than

{
} clang++ -std=c++11 test.cpp -O3 -DNOEXCEPT=""

}: |

josuttis | eckstein

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis Beware of C++

Test by HH [c++std-lib-35804]

#include <vector> int mainQ)
#include <string> {
#include <chrono> vector<X> v(1000000);

#include <iostream>
using namespace std;
using namespace std::chrono;

cout << "cap.: " << v.capacity() << endl;

auto tO = high_resolution_clock: :now(Q);

class X v.emplace_back(Q);
{ auto tl1 = high_resolution_clock::now(Q);
private:
string S; auto d = duration_cast<milliseconds>(t1-t0);
pugz;c: cout << d.count() << " ms\n";
: s(100, "a") { b
}
W | nonoexcept | noexcept |
different clang++ 1,000,000 228 - 239 ms 19-22 ms
machines! T g++49 1,000,000 15-31ms 0 ms
; g++49 10,000,000 234 — 249 ms 15-31ms
3 g++49 100,000,000 core dump core dump

josuttis | eckstein

Open

B Which containers should have noexcept move operations?
— string and vector!
— deque, list, associative, unordered?

B Should we specify this in the standards as
— required?
— required for release mode?

B Should we have semantics for a definition of
"strongly encouraged to be noexcept"?

— The proposals for the FORM were so far:
» some form of special written noexcept (italics or so)
* [*noexcept*/
* [[noexcept]]
» some form of noexcept(NDEBUG)
* noexcept(probably)
 throw(unlikely)
e [[have_mercy]]

josuttis | eckstein

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis Beware of C++

Additional noexcept Guideline?

* |f the move constructor
has a noexcept specification,

the default constructor
should have a noexcept specification

e STL [c++std-1ib-35831] :
— Note that default ctors and move ctors are twins when it comes to
noexcept - either both should be marked, or neither.

— This is nearly a fundamental law - if an object always needs to
acquire a resource even in its default-constructed state, then the
move ctor also needs to acquire such a resource (because you
start with one object and end with two), in order to avoid emptier-
than-empty.

— But if an object can be default constructed noexceptly, then move
construction can be implemented with default construction and
nofail swap.

josuttis | eckstein

Additional noexcept Guideline?

* But, HH [c++std-lib-35836] :
— There is a caveat here though.
— | can not find anywhere in the allocator requirements that if the allocator
is default_constructible, that it is nothrow_default_constructible.
— We have two choices:

1. Require that allocators be either

lis_default_constructible<A>{} || is_nothrow_default_constructible<A>{}.
2. vector{} is noexcept only if Allocator{} is noexcept.

[Note: std::allocator{} is already noexcept].

| prefer 2. It gives allocator authors more latitude for negligible cost.

— Also we currently specify vector{} like so:
vector() : vector(Allocator()) { }
It would be so much better to specify it with:
vector() noexcept(is_nothrow_default_constructible<allocator_type>{})
I.e. not require (nor even encourage) an allocator copy construction.

josuttis | eckstein

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis Beware of C++

Additional noexcept Guideline?

* But, PD [c++std-lib-35832] :

— In my opinion, the current wide/narrow practice is wrong.

— It's wrong on a conceptual level, because (almost) no function is
actually wide. All functions have implicit requirements that their
arguments, *this, and everything else reachable from them be a valid
object. (Or, in the case of a constructor, that 'this' points to storage
suitable to hold an object.)

— It's also wrong because it sets up a conflict.
When specifying, say, operator*, we now need to make a choice
between adding a Requires clause and a noexcept, the two being
mutually exclusive under the wide/narrow theory.
This does not improve the quality of the specification.

josuttis | eckstein

B [tis key to have guidelines
for how to use C++ Core
Features

B I[deally, together with each
new core feature

B But
— guidelines require experience
— are living documents

josuttis | eckstein

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis

Beware of C++

P a(77);

P b{77};
Pc=77;
Pd={}
Pe={42}%;

P f={77,88 };

josuttis | eckstein

explicit P(std::initializer_list<int>);

class P
{
public:

P(int = 0);
};
void foo(const P&);
foo O;
foo (47);
foo ({3):
foo ({42});
foo ({42,43});

foo ({42,43,44}); /l ERROR due to explicit
foo (P{42,43,44%); Il OK, explicit conversion

Initializer Lists and explicit

/I ERROR

/I OK

/I OK !

/I ERROR due to explicit
/I ERROR due to explicit

/I OK
/I OK
/I OK
/l OK !
/I ERROR due to explicit
/I ERROR due to explicit

class P

{
public:

josuttis | eckstein

explicit P(int = 0);
P(std::initializer_list<int>);

};

P a;

P b(42);

P c = 42;

Pd {};

Pe {77}

P {77, 5%
Pg={}
Ph={L77%;
Pi={{77,5%;

Initializer Lists and explicit

/I OK, calls P::P(int)
/I OK, calls P::P(int)
/l ERROR

/I OK, calls P::P(int) (calls P::P(initializer_list) without def. constr.)
/I OK, calls P::P(initializer_list)
/I OK, calls P::P(initializer_list)

/I ERROR (calls P::P(initializer_list) without default constructor)
/I OK, calls P::P(initializer_list)
/I OK, calls P::P(initializer_list)

Copyright 2014 by N. Josuttis

12

Nicolai M. Josulttis Beware of C++

Library Issue 2193

Resolution for C++14:
Split constructors:

expHeit vector(Q);

template <class T, class Allg explicit vector(const Allocatorg);
class vector {
public:

explicit vector(const Allocator& = Allocator());

explicit vector(size_type n);

vector(size_type n, const T& value, const Allocator& = Allocator());

template <class Inputlterator>

vector(Inputlterator first, Inputlterator last, const Allocator& = Allocator());
vector(const vector<T,Allocator>& x);
vector(initializer_list<T>, const Allocator& = Allocator());

}:

vector<int> vl = {1, 2 }; //OK

vector<int> v2 = { 1 }; /I OK

vector<int> v3 = {}; /| ERROR Thanks to Jonathan Wakely and

Marshall Clow for this example

template <typename ...T>
void g (T... t) {

vector<int> v = { t... }; //OKfor g(1), 9(1.,2), 9(1,2,3), ... but ERROR for gQ
}

josuttis | eckstein

Guidelines for explicit ?

The default constructor should never be explicit

— If all arguments of an explicit constructor have default values,
declare the default constructor separately

* An initializer list constructor should never be explicit

* Any other constructor should be explicit,
if
— parameters affect behavior instead of core content

* Shouldn't the default constructor always be its own beast?

josuttis | eckstein

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis

Beware of C++

josuttis

template <class... Types>
class tuple {
public:
constexpr tuple(); CI aS S tu p I e<>
explicit constexpr tuple(const Typesé&...);
template <class... UTypes>
explicit constexpr tuple(UTypes&&...); h aS
tuple(const tuple&) = default;
tuple(tuple&&) = default;
template <class... UTypes> 18 Constructors
constexpr tuple(const tuple<UTypes...>&);
template <class... UTypes>
constexpr tuple(tuple<UTypes...>&&);
template <class Ul, class U2>
constexpr tuple(const pair<Ul, U2>&); // only if sizeof...(Types) == 2
template <class Ul, class U2>
constexpr tuple(pair<uUl, U2>&&); // only if sizeof...(Types) == 2
template <class Alloc>
tuple(allocator_arg_t, const Alloc& a);
template <class Alloc>
tuple(allocator_arg_t, const Alloc& a, const Types&...);
template <class Alloc, class... UTypes>
tuple(allocator_arg_t, const Alloc& a, UTypes&&...);
template <class Alloc>
tuple(allocator_arg_t, const Alloc& a, const tuple&);
template <class Alloc>
tuple(allocator_arg_t, const Alloc& a, tuple&&);
template <class Alloc, class... UTypes>
tuple(allocator_arg_t, const Alloc& a, const tuple<UTypes...>&);
template <class Alloc, class... UTypes>
tuple(allocator_arg_t, const Alloc& a, tuple<UTypes...>&&);
template <class Alloc, class Ul, class U2>
tuple(allocator_arg_t, const Alloc& a, const pair<Ul, U2>&);
template <class Alloc, class Ul, class U2>
tuple(allocator_arg_t, const Alloc& a, pair<Ul, U2>&&);

We still have more explicit initialization Mess

| eckstein

josuttis

Guidelines for constexpr ?

* The current situation is a complete mess
* Some recent quotes from the reflector:

Constexpr is not for optimization. The compilers can inline well already.
Use constexpr when guaranteed static initialization is important. E.g. the
construction of global atomics really cannot be deferred to run time.

Use constexpr when you anticipate using the results to define array sizes
or appear within template non-type arguments.

I think that "making everything possible constexpr" is borderline insane. It
leads to unnecessarily increased compile times, potential code bloat, and
wishes to overload on constexpr so that we can select different algorithms
for compile time and run time.

By all means "be generous,” but use constexpr only when there is a
potential need for guaranteed compile-time evaluation.

Beneficial uses of constexpr on non-trivial computations aren't always
obvious from past experience.

| eckstein

Copyright 2014 by N. Josuttis

14

Nicolai M. Josulttis

Beware of C++

Guidelines for constexpr ?

* Some recent quotes from the reflector (cont.):

— There seems to be a "potential” need for everything that can be constexpr
to be constexpr. How do we gain confidence that nobody's going to need
to use some function in a static initializer?

— | saw someone asking if main() could be constexpr.

— It will not be easy to draw a simple and clear line between constexpr and
non-constexpr in the library, but I think we have to try. We are supposed to
be experts, so we should be better at drawing a line than the average
programmer.

— constexpr can always be added later when there is empirical evidence
showing benefit.

— The problem is, when us experts get it wrong, everyone else waits years
for us to release a fix. As per our vote in Chicago, vendors are not allowed
to offer a fixed version as a conforming extension.

— Yes, | don't think it is a question we can ignore, but for a solution to

become a rule someone has to propose something and gather a
consensus.

josuttis | eckstein

® Which function has changed
with each and every
C++ Standard,
so that we have 4 different
definitions now ?

josuttis | eckstein

Copyright 2014 by N. Josuttis

15

Nicolai M. Josulttis Beware of C++

make_pair() in C++98

namespace std {
/[implementation according to C++98:

template <typename T1, typename T2>

pair<Tl,T2> make_pair (const T1l& x, const T2& y) {
return pair<T1,T2>(X,y);

}

std: :make_pair (42, "hi') //=> std::pair<int,const char[3]>

josuttis | eckstein

Trying:

namespace std {
template <typename T1l, typename T2>
pair<T1,T2> make_pair (const T1& X,
const T2& y) {
return pair<T1l,T2>(X,y);
3
} ___ SIS —

int mainQ)

{
std:-map<int,std::string> m;
if (*m.begin() == std::make_pair(42,"hi")) {

=> Error message with 238 rows

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis Beware of C++

181. make pair() unintended behavior

Section: 20.3 [pairs] Status: TC1 Submitter: Andrew Koenig Opened: 1999-08-03 Last modified: 2012-11-14

View all other issues in [pairs].

View all issues with TC1 status.

Discussion:

The claim has surfaced i Usenet that expressions such as
make pair("abc", 3)

are illegal. notwithstanding their use in examples, because template instantiation tries to bind the first template parameter to
const char (&) [4].which type is uncopyable.

I doubt anyone intended that behavior...

Proposed resolution:
In 202 [utility]. paragraph 1 change the following declaration of make_pair():
template <class T1l, class T2> pair<T1l,T2> make pair(const Tl&, const T2&);
to:
template <class T1, class T2> pair<T1,T2> make pair(T1l, T2);
In 20 3 [pairs] paragraph 7 and the line before. change:

template <class T1l, class T2>
pair<Tl, T2> make_pair(const Tlié x, const T2& v);

to:

template <class T1l, class T2>
pair<Tl, T2> make pair (Tl x, T2 y);

and add the following footnote to the effects clause:

According to 12.8 [class.copy]. an implementation is permitted to not perform a copy of an argument. thus avoiding
unnecessary copies.

Rationale:

Two potential fixes were suggested by Matt Austern and Dietmar Kiihl. respectively. 1) overloading with array arguments, and 2)
use of a reference_traits class with a specialization for arrays. Andy Koenig suggested changing to pass by value. In discussion, it
appeared that this was a much smaller change to the standard that the other two suggestions, and any efficiency concerns were
more than offset by the advantages of the solution. Two implementors reported that the proposed resolution passed their test
suites.

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis Beware of C++

make_pair() in C++03

namespace std {
/[implementation according to C++03:

template <typename T1, typename T2>

pair<Tl,T2> make_pair (Tl x, T2 y) { //byvalue!
return pair<Tl,T2>(X,Y);
3

std::make_pair (42, "hi') //=> std::pair<int,const char*>

josuttis | eckstein

make_pair() in C++11

e std::make_pair() shall support move semantics
=> rvalue references have to be used
=> we have the decay problem again

=> we have to fix that problem with std: :decay<>

namespace std {

/l implementation according to C++11:
template <typename T1l, typename T2>
constexpr pair<typename std::decay<T1>::type,

typename std::decay<T2>::type>
make_pair (T1&& x, T2&& y) {

return pair<typename std::decay<T1>::type,
typename std::decay<T2>::type>(std::forward<Tl>(x),

std: :forward<T2>(y));
}

}

std::make_pair (42, "hi') //returns a std::pair<int,const char*>

josuttis | eckstein

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis Beware of C++

make_pair() in C++11

e std: :make_pair() shall support move semantics
=> rvalue references have to be used
=> we have the decay problem ag -

=> we have to fix that problem wit| std::decay<> in addition strips
cv-qualifiers from class types

namespace std {

/l implementation according to C++11:

template <typename T1l, typename T2>

constexpr pair<typename std::decay<T1>::type,
typename std::decay<T2>::type>

make_pair (T1&& x, T2&& y) {

return pair<typename std::decay<T1>::type,
typename std::decay<T2>::type>(std::forward<T1l>(x),
std: :forward<T2>(y));

}
}

std::make_pair (42, "hi') //returns a std::pair<int,const char*>

josuttis | eckstein

make_pair() in C++14

e std: :decay_t<>
* no change in semantics

namespace std {

/l implementation according to C++14:
template <typename T1, typename T2>
constexpr pair<std::decay_ t<T1>,

std::decay_t<T2>>
make_pair (T1&& x, T2&& y) {

return pair<std::decay_ t<T1>,
std: :decay_t<T2>>(std: :forward<T1>(x),
std: :forward<T2>(y));

}
}

std::make_pair (42, "hi'") //returns a std::pair<int,const char*>

josuttis | eckstein

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis Beware of C++

Using the RET Trick

namespace std {

template <typename T1, typename T2,

typename RET = pair<std::decay_ t<T1>,
std: :decay_t<T2>>>
RET make_pair (T1&& x, T2&& y) {
return RET(std::forward<T1>(x),std::forward<T2>(y));

}

}

* E.g.used in gcc in some places
* Danger: programmers are sheaky little buggers and may
explicitly provide the third type

= except for constructors
Thanks to Jonathan Wakely

josuttis | eckstein

Dealing with Templates

* For all these C++ templates (and xml, html, ...) it helps to
see matching angle brackets:

template <typename T1l, typename T2,
typename RET = pair<std::decay_ t<T1>,
std: :decay_t<T2>>>

* VIM: In .vimrc:
" match pairs of < and >
autocmd FileType cpp set mps+=<:>

josuttis | eckstein

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis

Beware of C++

Guidelines for Template Parameters?

B If you know that the object is always cheap to copy
then pass by value.
m If it might not be cheap to copy, you have to make a choice:
— If the expected type is likely to be an rvalue and is moveable, then

you call by value so that the caller passes temporaries or uses
move

— Ifit's not cheap to copy and not moveable, then still take by value
and let the caller use std::ref()
— Otherwise use const Ivalue reference
* Think about whether and where to decay
B If you return something in the argument, use a non-const lvalue
reference
B If you have to pass move semantics into other parts of the
called function, declare as universal reference and forward<>

— Think about whether and where to decay

josuttis | eckstein

. Eric Niebler @ C++Now May 14, 2014:

Passing and Returning in C++11

Input

small & “sink” Pass by value

all others Pass by const ref
Output Return by value

Input/Output Pass by non-const ref (?)

Copyright 2013 Aerix Consulting 51

Copyright 2014 by N. Josuttis

21

Nicolai M. Josulttis Beware of C++

. Eric Niebler @ C++Now May 14, 2014:

Passing and Returning in C++11

Input

small & “sink” Pass by value

all others Pass by const ref
Output Return by value

Input/Output Use a stateful algorithm object (*)

(*) Initial state is a sink argument to the constructor

Copyright 2013 Aerix Consulting 52

B [tis key to have guidelines
for how to use C++ Core
Features

B |deally, before we have to
adapt them in the library

B That's way before Scott or
Herb write books about them!

josuttis | eckstein

Copyright 2014 by N. Josuttis

Nicolai M. Josulttis

Beware of C++

B noexcept
— new version
B explicit

B constexpr

josuttis | eckstein

B template parameters

We need guidelines for

— | plan to provide a first draft

Application Programmers

Class/Utilities Implementers

Library Implementers

Foundation Library Implementers

josuttis | eckstein

B Same guidelines
for different
groups?

B Which group has
to know and
understand
which detail?

Copyright 2014 by N. Josuttis

23

Nicolai M. Josulttis

Beware of C++

Beware of C++

B Which problems of this talk
should the ordinary C++
programmer know?

Too much!

josuttis | eckstein

SOA

in Practice
o

d /

Nicolai M. Josuttis

www.josuttis.com
nico@josuttis.com

josuttis | eckstein

Copyright 2014 by N. Josuttis

24

