Managing
Object Lifetimes

Marshall Clow
Qualcomm
marshall@idio.com
mclow®@boost.org
http://cplusplusmusings.wordpress.com
(intermittent)

C++Now 2014 May 2014

Object Lifetimes

@ One of the least appreciated features of C++
@ Scope based
@ Deterministic

@ Even in the case of exceptions (even from
constructors)

@ Temporary values, too

Object Lifetimes (2)

@ Gaby alluded to this in his keynote on
Tuesday. (Sean and Eric as well)

@ A constructor turns memory into an object
@ A destructor fturns an object info memory

@ An objects lifetime starts when the
constructor completes, and ends when the
destructor begins.

Bad code

class Fancy;
Fancy* deserialize (void *ptr, size t size

Fancy* read from disk(const char *filename
Fancy *ret val = NULL;
FILE *f = fopen (filename, “rb”);
if (£) {
size t sz = file size(f);
void *p = malloc(sz);
if (p) {
fread(p, 1, sz, f);
ret val = deserialize(p, sz);
free(p);

}
}

return ret val;

}

We can fix this

class Fancy;
Fancy* deserialize (void *ptr, size t size);

Fancy* read from disk(const char *filename) {
Fancy *ret val = NULLj;
FILE *f = fopen (filename, “rb”);
if (f) 4
size t sz = file size(f);
void *p = malloc(sz);
if (p) {
fread(p, 1, sz, f);
ret val = deserialize(p, sz);
free(p);

}
}

return ‘ret Vel

}

C++ gives us the tools
to do better

® Constructors and destructors are run
automatically

@ Even in the case of exceptions

@ The second-worst acronym in C++

@ It stands for "Resource Acquisition is
Initialization”

Examples in the
standard library

@ all the smart pointers (auto, unique, shared,
weak)

@ lock a mutex (unique_lock, shared_lock, etc)

@ many others

Better (safer) code

typedef unique ptr<FILE,int(*)(FILE*)> upfile t;

Fancy* read from diskl(const char *filename) ({
upfile t fp(fopen(filename, "rb"), fclose);
if (fp) {

size t sz = file size(fp.get());
unique ptr<char[]>
p(new (nothrow) char[sz]);
if (p) {
fread(p.get(), 1, sz, fp.get());
return deserialize(p.get(), sz);
}
}
return NULL;

}

Different code

typedef unique ptr<FILE,int(*)(FILE*)> upfile t;
upfile t F OPEN (const char *fn, const char *mode) {
FILE *f = fopen (fn, mode);
if (!'f)
throw runtime error("Can't open file'");
return upfile t (£, fclose);

}

Fancy* read from disk4(const char *filename) ({
auto £ = F OPEN(filename, "rb");
size t sz = file size(f.get());
unique ptr<char[]> p(new char[sz]);
fread(p.get(), 1, sz, f.get());
return deserialize(p.get(), sz);

}

A different approach

Fancy* read from disk2(const char *filename) {
ifstream i1ifs(filename, ios::binary);
if (1fs) {
std: :vector<char> v;
copy(istream iterator<char>(ifs),
istream iterator<char>(),
back inserter(v));
return deserialize(v.data(), v.size());

}
return NULL;

}

Other advantages

@ Exception safety
@ Easy fo reason about

@ Easy to review

"Error handling is left as an
exercise for the reader”

@ Error detection should be automatic
@ Error handling should be easy.

@ Error recovery should be automatic (in many
cases)

@ Boost.Exception makes layered error handling
possible/easy.

Incremental use
of RAII

Fancy * fancy factory (int ct, const char *xx) {
unique ptr<Fancy> ret (new Fancy(ct));
// ... a bunch of code

ret->method (xx) ;

// .. more code

if (some error)
return NULL;

// .. maybe more code

return ret.release();

}

Examples of RAII

Boost.ScopeExit

@ Written by Alexander Nasonov
@ In boost since 1.38

@ uses RAII technique to run arbitrary code at
scope exit.

@ http://www.boost.org/doc/libs/1_55_0/libs/
scope_exit/doc/html/index.html

ScopeExit Example

void world::add person(person const& a person) {
bool commit = false;

persons .push back(a_ person);

Following block is executed when the enclosing scope exits.
BOOST SCOPE EXIT(&commit, &persons) {

if(!commit) persons .pop back(); // rollback action
} BOOST SCOPE EXIT END

//

// other operations

commit = true; //disable rollback actions
} // scope exit code runs here...

Nitrogen

@ A library for Mac OS Carbon by Lisa
Lippincoftt.

@ Wrapped all of the Carbon calls
@ Threw exceptions on errors

a All resources were returned in “owned”
objects.

@ Writing code using Nitrogen was *wonderful*

Now for
something different:

Passing parameters

Parameter passing
and smart pointers

@ ThereS a lot of advice around about passing
smart pointers around.

@ Some of this really strange.

@ Passing shared_ptr<Foo> by const &.

Eric and Sean
stole my thunder

@ Guideline: Dont pass parameters as smart
pointers.

@ That decreases generality - adds coupling
@ There are obvious exceptions to this
@ Routines that consume the smart ptr

@ Routines that keep a copy of the smart
ptr.

Passing
pointers vs. references

@ Guideline: Pass optional parameters by
pointer, all others by value or reference.

@ See Wednesday's talks for advice on non-
pointer parameters

Questions?

