
(Why We Need) Large 
Code Base Change Ripple 

Management in C++
Niall Douglas



Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Contents:

1. What I am pitching: a new Boost library, and a possible 
motivating vision of a long-term future for C++ and 
Boost

2. Many (contentious) claims as to why ...

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


What I am pitching: a low-
level embedded graph 

database for Boost



Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

The proposed embedded graph 
database
● All first tier content is a standard file which can be 

opened, mmapped etc
● Takes advantage of filing system specific features such 

as extents, metadata/data journaling, hole punching, 
copy on write, bitrot self healing etc

● Strong versioning and MVCC concurrency
● Per-graph content protection (e.g. parity healing)
● Content addressable with a per-graph hash of your 

choice

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

The proposed embedded graph 
database
● Per-graph optional ACID transactions
● Per-graph arbitrary indexers (e.g. Boost.Graph, 

SQLite3, ZIP etc)
● Network shardable to other copies with interrupted 

partial copy resumption
● Objects can be executable (in fact is self hosting)
● Uses an algorithm very close to git
● Designed to act like increasing mount points of 

‘database-ness’ overlaid onto the filesystem

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

The proposed embedded graph 
database
● Performance is expected to be within two and five 

orders of magnitude slower than the big iron 
graphstores

● Write transaction performance shouldn’t be lower than 
ten per second hopefully

● All designed to work during very early process 
bootstrap i.e. before shared libraries are loaded

● There is nothing close in existing software - this design 
and its abilities are very unique

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


It is really more of a 
“generic data persistence 

library”



Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Want more detail?

There is a 25,000 word accompanying position white paper 
on ArXiv at http://arxiv.org/abs/1405.3323:
● What makes code changes ripple differently in C++ to other languages?
● Why hasn’t C++ replaced C in most newly written code?
● What does this mean for C++ a decade from now?
● What C++ 17 is doing about complexity management
● What C++ 17 is leaving well alone until later: Type Export
● Detail about the embedded graph database design
● Two example killer applications for such a graph database namely:

a. An example C++ object components design (similar to Bandela’s)
b. An example extensible Filesystem design

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

What does any of this have to do 
with the price of fish?
● What does this have to do with change 

ripple management?
● Or Boost?
● Or C++?
● Or anything?

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Let the contention begin!

I am now going to articulate a (motivating) 
vision for a long term future goal of C++ and 
Boost which explains why we might absolutely 
need one of these databases soon

I will then make a series of supporting claims most of 
which will be contentious (and hence I place them last!)

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


What is this (motivating) 
vision of the future of C++ 

and Boost?



Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

A post-C++ 17 goal:

I’d like to see a world where we can write C++ 
as if everything in the solution (including 

Python, Lua, PHP etc, including C++ in closely 
related processes) is header only, no matter 

the size of the program

(It is a natural result of a complete ABI management 
solution)

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Example:
class Foo { virtual void boo(int a); };

A rule in the graph database says that when this type is 
changed, it should be reflected via std::reflect into a 
Python binding:

class Foo:

    @accepts(int)

    @returns(None)

    def boo(self, a)

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Example:

Let’s break Foo’s ABI:

class Foo { virtual void boo (double); };

When you hit compile in C++ for each use of Foo::boo() 
in Python code you get:

TypeWarning:  'boo' method accepts (float), but was given 
(int)

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

To clarify:

● C++ moves from a source file compilation model to a 
type graph compilation model (similar to exported 
templates)

● The type graphs are compiled a bit like GLSL shaders 
into many tiny C++ Modules i.e. bits of precompile all 
put into the graphstore

● Reflection (runtime) equals a graph query
● To bootstrap a C++ process equals visiting a graph 

query for all the matching tiny C++ Modules

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Consequences:

● Instant notification of breakages from a 
code change no matter how far away

● Optimally minimal rebuild (and can dispense 
with external build tools)

● Optimal optimisation which can be pushed 
onto a batch pass/cloud compute

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Consequences:

● Easy components via ripple propagation 
rules in the graphstore

● No longer pollutes all over the C symbol 
table

● Finally a real ABI management solution
● Other programming languages would be 

very interested in this

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Why???



Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Claims (to which I shall return):

1. C++ is in relative decline
2. Boost is in both absolute and relative 

decline
Therefore:
3. We need to return to becoming a better 

systems programming language
4. We need “signature projects” for C++ 11/14

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Why this instead of 
including more code per-

compiland?



Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Where hardware is going soon

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Where hardware is going soon

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

My best speculations on effects:

I therefore claim these likely outcomes in the future:
1. The cost of including ever more source code per-

compiland stops being sunk by transistor density 
growth

2. Therefore build times start to rise and stop falling with 
time

3. Therefore C++ starts to look more like in the 1990s 
with small compiles and large links
○ Except with all our fancy modern C++ techniques

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

My best speculations on effects:

Also:
4. There will be a return to growth for systems 

programming languages as software is refactored to 
cope with linear growth CPU and RAM but still 
exponential growth storage

5. I claim this will happen around 2017-2020 if present 
trends continue and no surprises turn up
(Mass production of Graphene or Phosphorine transistors won’t be ready 
by 2020 at present rates of R&D)

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Will C++ be that majority 
choice of systems 

language?



Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

The present structural revolution

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Claim:
C++ has been in relative 

decline for a decade
(with a pause 2009-2011)



Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

The present structural revolution

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

The present structural revolution

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Possible reasons why C++ 
is in relative decline

And why should we care?



Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Why C++ is in relative decline?

1. C++ is no longer a general purpose programming 
language - it’s a niche specialist language suited for:
a. Low latency (async etc)
b. Maximum performance (maths etc)
c. Gluing application and service code written in other 

languages like Python or C# together

Note that C is good at all of the above too, and still remains 
more popular in open source than C++ for new code

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Why C++ is in relative decline?

2. C++ has stopped trying to be the best 
systems programming language possible
○ C++ 11/14 adds a ton of great stuff BUT …

■ Did any of it persuade someone like Linus that 
C++ might be tolerable in the Linux kernel?

■ Do the Python/Ruby/Lua/PHP interpreter guys 
look at C++ 11/14 and go “wow that transforms 
our use case for C++ over C”?

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Why should we care?

If:
a. C++ remains best in class for high performance 

math
b. C++ remains very strong in low latency async
c. BUT C remains preferred to C++ as a systems 

programming language

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Why should we care?

Then, assuming the previous claims are true, a reasonable 
prediction of the future is:
1. C (or some extension thereof) gets the majority of 

post-exponential hardware systems language growth
2. C++ becomes ever more like Haskell, with only a 

rarified programmer elite able to touch it

Is that what we want?

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Claim:
Since 2011 Boost is in 

both an absolute & 
relative  decline



Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

The Decline of Boost

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

The Decline of Boost

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

The Decline of Boost

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Possible reasons why 
Boost is in decline

And why should we care?



Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Why Boost is in decline?

1. The C++ 11/14 standard library now can do 
what people used to need Boost for

● Unfixed bugs in Boost means that people simply 
switch to C++ 11/14 instead if they can

● People think a particular Boost library needs all of 
Boost as a dependency - a real showstopper

● Boost is seen as simply no longer relevant

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Why Boost is in decline?

To quote a highly respected engineer from this 
very conference who said a few days ago:

“Boost used to be about all the stuff you really wanted in 
the standard. Now Boost looks like all the stuff that wasn’
t good enough to get into the standard”

- somebody well known (not me)

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Why Boost is in decline?

2. Boost has become two mutually 
incompatible sets of libraries:
a. The C++ 11 STL emulation library for C++ 98

b. A set of libraries which push the boundaries of C++, 
as Boost once used to in the 1990s

■ With the latter being suffocated of late

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Why Boost is in decline?

3. Most of the interesting C++ 11 libraries on 
the internet appear to have no interest in 
joining Boost (with a few honourable 
exceptions)

I personally find that very scary

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Why Boost is in decline?

4. Boost makes no attempt to preserve ABI 
stability, and therefore is not welcome in 
large stable code bases

● None of the improvements in C++ 11/14 do anything 
for change ripple management, so even mild ABI 
breakage is intolerable and therefore Boost is 
banned/pinned to some ancient version

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Why should we care?

Simple answer:

How many of the changes to C++ 11/14 
standard over C++ 98/03 originated in Boost?

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Assertion:
C++ ought to return to 

trying to become a better 
systems programming 

language



Assertion:
We want Boost to 

continue to lead out the 
future of C++

(and therefore all systems programming)



Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

So what?

What if one or all of the earlier assertions is false?
What if none of the issues described is a real problem?
What if all this is merely hand wavy nonsense?

An embedded graph database is still extremely useful:
● In 2014 it is still too hard for more than one process 

to write to many files concurrently
● In 2014 it is still too easy to lose data

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323


Large Code Base Change Ripple Management Niall Douglas    Paper: http://arxiv.org/abs/1405.
3323 

Want more detail?

There is a 25,000 word accompanying position white paper 
on ArXiv at http://arxiv.org/abs/1405.3323:
● What makes code changes ripple differently in C++ to other languages?
● Why hasn’t C++ replaced C in most newly written code?
● What does this mean for C++ a decade from now?
● What C++ 17 is doing about complexity management
● What C++ 17 is leaving well alone until later: Type Export
● Detail about the embedded graph database design
● Two example killer applications for such a graph database namely:

a. An example C++ object components design (similar to Bandela’s)
b. An example extensible Filesystem design

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

