(Why We Need) Large
Code Base Change Ripple
Management in C++

Niall Douglas

Contents:

1. What | am pitching: a new Boost library, and a possible

motivating vision of a long-term future for C++ and
Boost

2. Many (contentious) claims as to why ... @

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

What | am pitching: a low-
level embedded graph
database for Boost

The proposed embedded graph
database

All first tier content is a standard file which can be
opened, mmapped etc

Takes advantage of filing system specific features such
as extents, metadata/data journaling, hole punching,
copy on write, bitrot self healing etc

Strong versioning and MVCC concurrency

Per-graph content protection (e.g. parity healing)
Content addressable with a per-graph hash of your
choice

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

The proposed embedded graph
database

Per-graph optional ACID transactions

Per-graph arbitrary indexers (e.g. Boost.Graph,
SQLite3, ZIP etc)

Network shardable to other copies with interrupted
partial copy resumption

Objects can be executable (in fact is self hosting)
Uses an algorithm very close to git

Desighed to act like increasing mount points of
‘database-ness’ overlaid onto the filesystem

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

The proposed embedded graph
database

e Performance is expected to be within two and five
orders of magnitude slower than the big iron
graphstores

e Write transaction performance shouldn’t be lower than
ten per second hopefully

e All designed to work during very early process
bootstrap i.e. before shared libraries are loaded

e There is nothing close in existing software - this design
and its abilities are very unique

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

It is really more of a
“generic data persistence
library”

Want more detail?

There is a 25,000 word accompanying posmon white paper
on ArXiv at

What makes code changes ripple differently in C++ to other languages?
Why hasn’t C++ replaced C in most newly written code?

What does this mean for C++ a decade from now?

What C++ 17 is doing about complexity management

What C++ 17 is leaving well alone until later: Type Export

Detail about the embedded graph database design

Two example killer applications for such a graph database namely:

a. An example C++ object components design (similar to Bandela’s)
b. An example extensible Filesystem design

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

What does any of this have to do
with the price of fish?

e What does this have to do with change
ripple management?

e Or Boost?

o Or C++?

e Or anything?

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Let the contention begin!

| am now going to articulate a (motivating)
vision for a long term future goal of C++ and

Boost which explains why we might absolutely
need one of these databases soon

| will then make a series of supporting claims most of
which will be contentious (and hence | place them last!)

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

What is this (motivating)
vision of the future of C++
and Boost?

A post-C++ 17 goal:

I’d like to see a world where we can write C++
as if everything in the solution (including
Python, Lua, PHP etc, including C++ in closely
related processes) is header only, no matter
the size of the program

(It is a natural result of a complete ABI management
solution)

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Example:

class Foo { virtual void boo (int a); };

A rule in the graph database says that when this type is
changed, it should be reflected via std: :reflect into a
Python binding:

class Foo:
@accepts (int)
@returns (None)

def boo(self, a)

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Example:

Let’s break Foo’s ABI:

class Foo { wvirtual void boo D

When you hit compile in C++ for each use of Foo: :boo ()
in Python code you get:

TypeWarning: 'boo' method accepts (float), but was given
(int)

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

To clarify:

e (C++ moves from a source file compilation model to a
type graph compilation model (similar to exported
templates)

e The type graphs are compiled a bit like GLSL shaders
into many tiny C++ Modules i.e. bits of precompile all
put into the graphstore

e Reflection (runtime) equals a graph query

e To bootstrap a C++ process equals visiting a graph
query for all the matching tiny C++ Modules

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Consequences:

e [nstant notification of breakages from a
code change no matter how far away

e Optimally minimal rebuild (and can dispense
with external build tools)

e Optimal optimisation which can be pushed
onto a batch pass/cloud compute

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Consequences:

e Easy components via ripple propagation
rules in the graphstore

e No longer pollutes all over the C symbol
table

e Finally a real ABI management solution

e Other programming languages would be
very interested in this

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Claims (to which | shall return):

1. C++is in relative decline
2. Boost is in both absolute and relative
decline

Therefore:

3. We need to return to becoming a better
systems programming language
4. We need “signature projects” for C++ 11/14

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Why this instead of
including more code per-
compiland?

Where hardware is going soon

10,000,000

Dual-Core Itanium 2 o /

1,000,000 = NANOMETERS

Intel CPU Trends -

{sources: Intel, Wikipedia, K. Olukotun)

100,000

A A
A A ®
A “
| 7A rY | @ Transistors (000)

T w w1

7~ ® @ Clock Speed (MHz)
APower (W)
o Perf/Clock (LP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

Large Code Base Change Ripple Management Niall Douglas

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Where hardware is going soon

Magnetic vs Flash Storage Capacity per
Inflation-adjusted Dollar 1980-2014

R?=0.996816

o
o
o

R?=0.998549

by
“
=2
]
g
g
3
s
2
g

1980 1985 1990 1995 2000 2005 2010 2015 2020

® Magnetic Hard Drives B Solid State Drives

Model Magnetic Hard Drives Model Solid State Drives

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

My best speculations on effects:

| therefore claim these likely outcomes in the future:

1. The cost of including ever more source code per-
compiland stops being sunk by transistor density
growth

2. Therefore build times start to rise and stop falling with
time

3. Therefore C++ starts to look more like in the 1990s
with small compiles and large links
o Except with all our fancy modern C++ techniques

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

My best speculations on effects:

Also:

4. There will be a return to growth for systems
programming languages as software is refactored to
cope with linear growth CPU and RAM but still
exponential growth storage

5. | claim this will happen around 2017-2020 if present
trends continue and no surprises turn up

(Mass production of Graphene or Phosphorine transistors won’t be ready
by 2020 at present rates of R&D)

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Will C++ be that majority
choice of systems
language?

The present structural revolution

Compare Languages

onthly Commits | Monthly Contributors | Monthly Lines of Code Cha

Monthly Contributors

The lines show the number of developers who have contributed at least one line of code in each month. More

15,000

10,000

JavaScript

5.000

2005 E'CICIVE- 2007 2008 2009 2010 2011 2012

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Claim:
C++ has been in relative

decline for a decade
(with a pause 2009-2011)

The present structural revolution

Compare Languages

Monthly Commits | Monthly Contributors |SMon

Monthly Contributors (Percent of Total)

The lines show the number of developers who have contributed at least one line of code in each month. More

JavaScript

2005 2006 2007 2008 2009 2010 2011 2012 2013 201«

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

The present structural revolution

Compare Languages

anged | Monthly Projects

Monthly Projects (Percent of Total)

The lines show the count of projects with at least one line of code changed in a month. More

JavaScript

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Possible reasons why C++
is in relative decline

And why should we care?

Why C++ is in relative decline?

1. C++is no longer a general purpose programming
language - it’s a niche specialist language suited for:
a. Low latency (async etc)
b. Maximum performance (maths etc)

c. Gluing application and service code written in other
languages like Python or C# together

Note that C is good at all of the above too, and still remains

more popular in open source than C++ for new code
Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Why C++ is in relative decline?

2. C++ has stopped trying to be the best
systems programming language possible
o C++ 11/14 adds a ton of great stuff BUT ...

m Did any of it persuade someone like Linus that
C++ might be tolerable in the Linux kernel?

m Do the Python/Ruby/Lua/PHP interpreter guys

look at C++ 11/14 and go “wow that transforms
our use case for C++ over C”?

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Why should we care?

If:

a. C++ remains best in class for high performance
math

b. C++ remains very strong in low latency async

c. BUT C remains preferred to C++ as a systems
programming language

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Why should we care?

Then, assuming the previous claims are true, a reasonable
prediction of the future is:

1. C (or some extension thereof) gets the majority of
post-exponential hardware systems language growth

2. C++ becomes ever more like Haskell, with only a
rarified programmer elite able to touch it

Is that what we want?

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Claim:
Since 2011 Boost is in
both an absolute &
relative decline

The Decline of Boost

Commits per Month

Zoom | 1yr | 3yr | Syr [10yr] All |

2004 2006

Large Code Base Change Ripple Management Niall Douglas

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

The Decline of Boost

Number of Contributors

Libraries added to Boost

Zoom | 1yr | 3yr | Syr [10yr] Al |

7

P~ .

2013 2014

2008 2009 2010 2011 2012 2013 2014

%
Doasa A AN o ']|' Year
\

A a
- WAL PN

2010

;] M Added (General Purpose) [l Added (Single Purpose)

Large Code Base Change Ripple Management Niall Douglas

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

The Decline of Boost

Posts to Boost mailing lists

16000 Il boost-devs

B boost-users

2009 2010 2011 2012 2013

Large Code Base Change Ripple Management Niall Douglas

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Possible reasons why
Boost is in decline

And why should we care?

Why Boost is in decline?

1. The C++ 11/14 standard library now can do
what people used to need Boost for

e Unfixed bugs in Boost means that people simply
switch to C++ 11/14 instead if they can

e People think a particular Boost library needs all of
Boost as a dependency - a real showstopper

e Boost is seen as simply no longer relevant

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Why Boost is in decline?

To quote a highly respected engineer from this
very conference who said a few days ago:

“Boost used to be about all the stuff you really wanted in
the standard. Now Boost looks like all the stuff that wasn’
t good enough to get into the standard”

- somebody well known (not me)

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Why Boost is in decline?

2. Boost has become two mutually

incompatible sets of libraries:
a. The C++ 11 STL emulation library for C++ 98

b. A set of libraries which push the boundaries of C++,
as Boost once used to in the 1990s

m With the latter being suffocated of late

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Why Boost is in decline?

3. Most of the interesting C++ 11 libraries on
the internet appear to have no interest in
joining Boost (with a few honourable
exceptions)

| personally find that very scary

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Why Boost is in decline?

4. Boost makes no attempt to preserve ABI
stability, and therefore is not welcome in
large stable code bases

e None of the improvements in C++ 11/14 do anything
for change ripple management, so even mild ABI
breakage is intolerable and therefore Boost is
banned/pinned to some ancient version

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Why should we care?

Simple answer:

How many of the changes to C++ 11/14
standard over C++ 98/03 originated in Boost?

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Assertion:

C++ ought to return to
trying to become a better
systems programming
language

Assertion:
We want Boost to
continue to lead out the
future of C++

(and therefore all systems programming)

So what?

What if one or all of the earlier assertions is false?
What if none of the issues described is a real problem?
What if all this is merely hand wavy nonsense?

An embedded graph database is still extremely useful:

e In 2014 it is still too hard for more than one process
to write to many files concurrently
e In 2014 it is still too easy to lose data

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

Want more detail?

There is a 25,000 word accompanying posmon white paper
on ArXiv at

What makes code changes ripple differently in C++ to other languages?
Why hasn’t C++ replaced C in most newly written code?

What does this mean for C++ a decade from now?

What C++ 17 is doing about complexity management

What C++ 17 is leaving well alone until later: Type Export

Detail about the embedded graph database design

Two example killer applications for such a graph database namely:

a. An example C++ object components design (similar to Bandela’s)
b. An example extensible Filesystem design

Large Code Base Change Ripple Management Niall Douglas Paper:

http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323
http://arxiv.org/abs/1405.3323

