Why Actors Rock: Designing a Distributed Database with libcppa

Matthias Vallentin matthias@bro.org

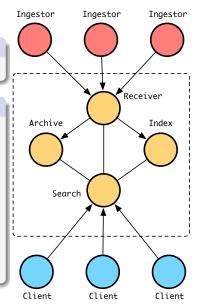
University of California, Berkeley

C++Now May 15, 2014

Outline

1. System Overview: VAST

- 2. Architecture: Ingestion, Indexing, and Query
 - Ingestion
 - Indexing
 - Query
- 3. Experience
- 4. Demo


VAST: Visibility Across Space and Time

VAST

Distributed database built with libcppa

Goals

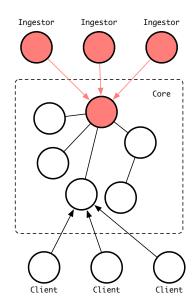
- Scalability
 - Sustain high & continuous input rates
 - Linear scaling with number of nodes
- Interactivity
 - Sub-second response times
 - ► Iterative query refinement
- Strong and rich typing
 - ► High-level types and operations
 - Type safety in query language

Example Use Case: Network Security Analysis

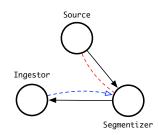
Network Forensics & Incident Response

- Scenario: security breach discovered
- Analysts tasked with determining scope and impact

Analyst questions

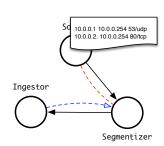

- ▶ How did the attacker(s) get in?
- ► How long did the they stay under the radar?
- ▶ What is the damage (\$\$\$, reputation, data loss, etc.)?
- ▶ How to detect similar attacks in the future?

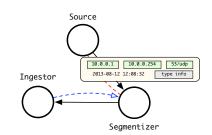
Outline


- 1. System Overview: VAST
- 2. Architecture: Ingestion, Indexing, and Query
 - Ingestion
 - Indexing
 - Query
- 3. Experience
- 4. Demo

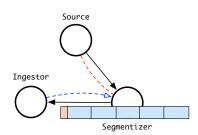
Outline

- 1. System Overview: VAST
- 2. Architecture: Ingestion, Indexing, and Query
 - Ingestion
 - Indexing
 - Query
- 3. Experience
- 4. Demo

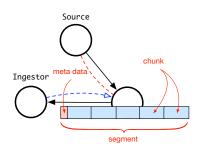


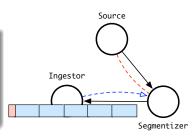

INGESTOR

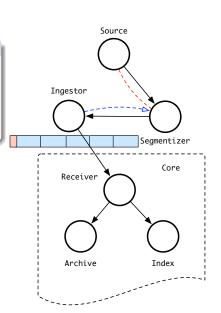
1. Parse input into events

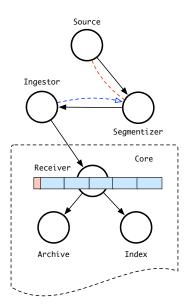


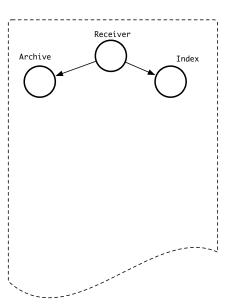
INGESTOR


1. Parse input into events

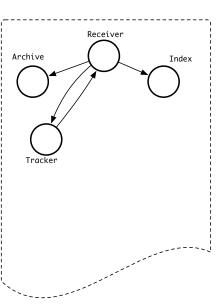

- 1. Parse input into events
- 2. Compress & chunk into segments


- 1. Parse input into events
- 2. Compress & chunk into segments


- 1. Parse input into events
- 2. Compress & chunk into segments

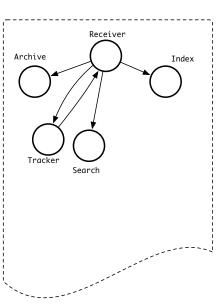

- 1. Parse input into events
- 2. Compress & chunk into segments
- 3. Send segments to RECEIVER

- 1. Parse input into events
- 2. Compress & chunk into segments
- 3. Send segments to RECEIVER


- 1. Parse input into events
- 2. Compress & chunk into segments
- 3. Send segments to RECEIVER

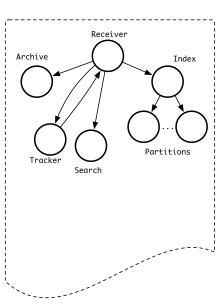
INGESTOR

- 1. Parse input into events
- 2. Compress & chunk into segments
- 3. Send segments to RECEIVER


- 1. Accept and ACK segment
- 2. Assign segment an ID range from space 2^{64}

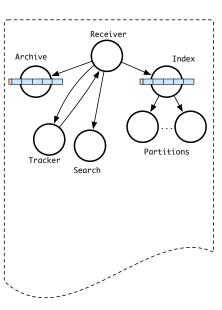
INGESTOR

- 1. Parse input into events
- 2. Compress & chunk into segments
- 3. Send segments to RECEIVER

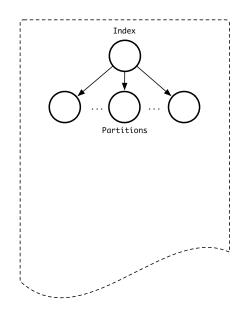

- 1. Accept and ACK segment
- 2. Assign segment an ID range from space 2^{64}
- 3. Record segment schema

INGESTOR

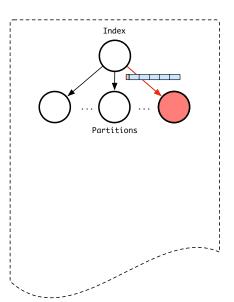
- 1. Parse input into events
- 2. Compress & chunk into segments
- 3. Send segments to RECEIVER


- 1. Accept and ACK segment
- 2. Assign segment an ID range from space 2^{64}
- 3. Record segment schema

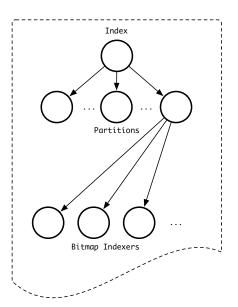
INGESTOR


- 1. Parse input into events
- 2. Compress & chunk into segments
- 3. Send segments to RECEIVER

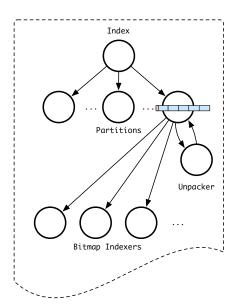
- 1. Accept and ACK segment
- 2. Assign segment an ID range from space 2^{64}
- 3. Record segment schema
- 4. Forward segment to ARCHIVE and INDEX


Outline

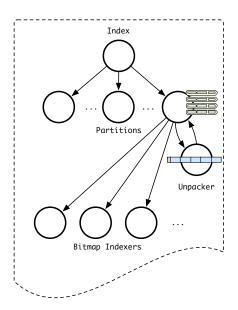
- 1. System Overview: VAST
- 2. Architecture: Ingestion, Indexing, and Query
 - Ingestion
 - Indexing
 - Query
- 3. Experience
- 4. Demo


INDEX

1. Forward segment to relevant partition


INDEX

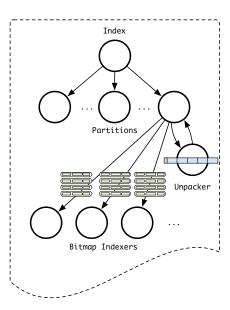
- 1. Forward segment to relevant partition
- 2. Spawn INDEXER for event values


INDEX

- 1. Forward segment to relevant partition
- 2. Spawn INDEXER for event values

INDEX

- 1. Forward segment to relevant partition
- 2. Spawn INDEXER for event values
- 3. Unpack segment back into events

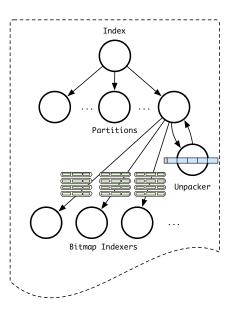


INDEX

- 1. Forward segment to relevant partition
- 2. Spawn INDEXER for event values
- 3. Unpack segment back into events

INDEXER

1. Receive event

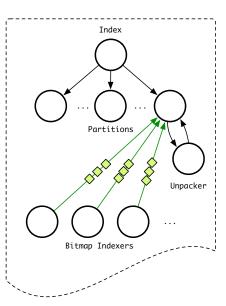


INDEX

- 1. Forward segment to relevant partition
- 2. Spawn INDEXER for event values
- 3. Unpack segment back into events

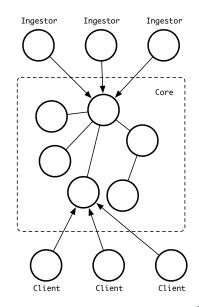
INDEXER

- 1. Receive event
- 2. Select value to index



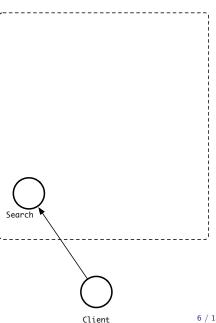
INDEX

- 1. Forward segment to relevant partition
- Spawn INDEXER for event values
- 3. Unpack segment back into events


INDEXER

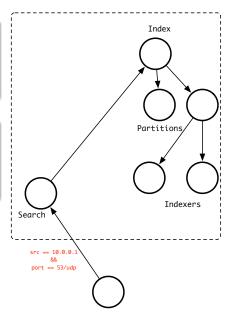
- Receive event
- 2. Select value to index
- 3. Report statistics back to partition

Outline


- 1. System Overview: VAST
- 2. Architecture: Ingestion, Indexing, and Query
 - Ingestion
 - Indexing
 - Query
- 3. Experience
- 4. Demo

CLIENT

1. Send query string to ${\tt SEARCH}$

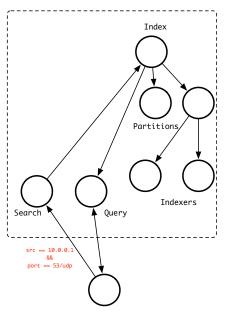

6 / 13

CLIENT

1. Send query string to ${\scriptsize \mathtt{SEARCH}}$

SEARCH

1. Parse and validate query string

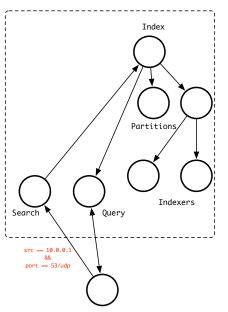


CLIENT

1. Send query string to SEARCH

SEARCH

- 1. Parse and validate query string
- 2. Spawn dedicated QUERY



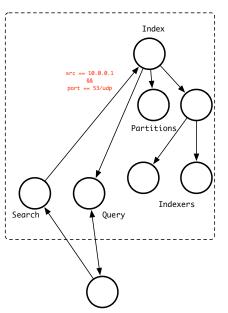
CLIENT

- 1. Send query string to SEARCH
- 2. Receive QUERY actor

SEARCH

- 1. Parse and validate query string
- 2. Spawn dedicated QUERY

Client

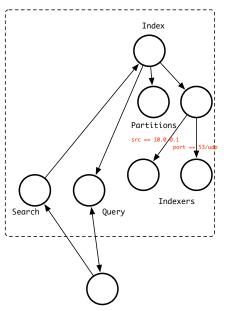

6 / 13

CLIENT

- 1. Send query string to SEARCH
- 2. Receive QUERY actor

SEARCH

- 1. Parse and validate query string
- 2. Spawn dedicated QUERY
- 3. Forward query to INDEX

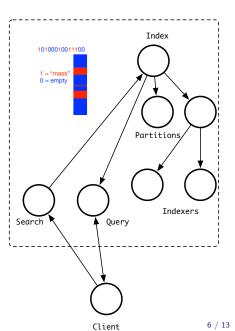

Client 6 / 13

CLIENT

- 1. Send query string to SEARCH
- 2. Receive QUERY actor

SEARCH

- 1. Parse and validate query string
- 2. Spawn dedicated QUERY
- 3. Forward query to INDEX

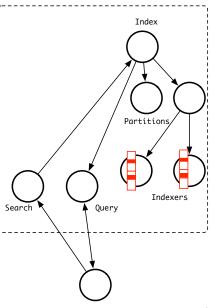


CLIENT

- 1. Send query string to SEARCH
- 2. Receive QUERY actor

SEARCH

- 1. Parse and validate query string
- 2. Spawn dedicated QUERY
- 3. Forward query to INDEX

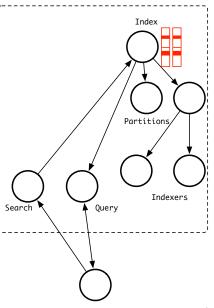


CLIENT

- 1. Send query string to SEARCH
- 2. Receive QUERY actor

SEARCH

- 1. Parse and validate query string
- 2. Spawn dedicated QUERY
- 3. Forward query to INDEX



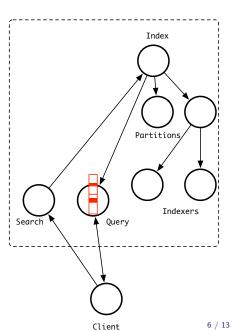
CLIENT

- 1. Send query string to SEARCH
- 2. Receive QUERY actor

SEARCH

- 1. Parse and validate query string
- 2. Spawn dedicated QUERY
- 3. Forward query to INDEX

CLIENT


- 1. Send query string to SEARCH
- 2. Receive QUERY actor

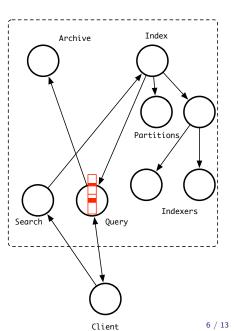
SEARCH

- 1. Parse and validate query string
- 2. Spawn dedicated QUERY
- 3. Forward query to INDEX

QUERY

1. Receive hits from INDEX

CLIENT

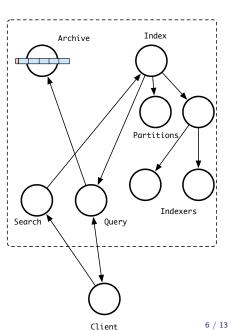

- 1. Send query string to SEARCH
- 2. Receive QUERY actor

SEARCH

- 1. Parse and validate query string
- 2. Spawn dedicated QUERY
- 3. Forward query to INDEX

QUERY

1. Receive hits from INDEX


CLIENT

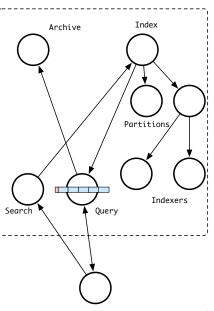
- 1. Send query string to SEARCH
- 2. Receive QUERY actor

SEARCH

- 1. Parse and validate query string
- 2. Spawn dedicated QUERY
- 3. Forward query to INDEX

- 1. Receive hits from INDEX
- 2. Ask ARCHIVE for segments

CLIENT


- 1. Send query string to SEARCH
- 2. Receive QUERY actor

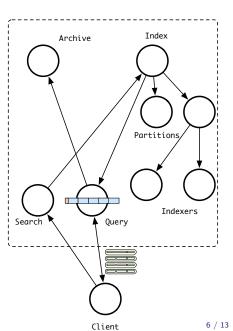
SEARCH

- 1. Parse and validate query string
- 2. Spawn dedicated QUERY
- 3. Forward query to INDEX

QUERY

- 1. Receive hits from INDEX
- 2. Ask ARCHIVE for segments
- 3. Extract events, check candidates

Client 6 / 13


CLIENT

- 1. Send query string to SEARCH
- 2. Receive QUERY actor
- 3. Extract results from QUERY

SEARCH

- 1. Parse and validate query string
- 2. Spawn dedicated QUERY
- 3. Forward query to INDEX

- 1. Receive hits from INDEX
- 2. Ask ARCHIVE for segments
- 3. Extract events, check candidates
- 4. Send results to CLIENT

Outline

- 1. System Overview: VAST
- 2. Architecture: Ingestion, Indexing, and Query
 - Ingestion
 - Indexing
 - Query
- 3. Experience
- 4. Demo

Issue #1: Bufferbloat

Bufferbloat

Large buffers cause high latency and jitter

Aside: Go

goroutines execute concurrently and exchange messages via channels

- ▶ Sender blocks when channel is full
- ► Receiver blocks when channel is empty
- \rightarrow Explicit notion of buffer
 - ▶ libcppa : no blocking to signal overload

Bufferbloat in VAST

- ► Large segments (128MB)
- Data flow rates
 - ▶ Ingestion: 80k–100k events/sec
 - ► Indexing: 20k–200k events/sec
- → Sender overloads receiver: system runs out-of-memory

Solution #1: Flow Control

Flow Control

Feedback on capacity from overloaded resource up to sender

Revised indexing process

- 1. PARTITION spawns indexers and dispatches events
 - Queue length: number of events sent to INDEXER
- 2. Indexers report back how many events they have indexed
 - Decreases queue length by events processed
- 3. Receiver polls index every 100ms for maximum queue length
 - ▶ If watermark reached, tell INGESTORS to stop
 - ▶ If watermark cleared, tell INGESTORS to go

Problem #2: Data Structure Inflation

Initial indexing process

- 1. Unpack segment
- 2. Create one vector<event> for meta indexes (across events)
- 3. Create one vector<event> for data indexes (per event)
- 4. Forward to events to the corresponding indexers

Issues

- 1. Memory overhead from maintaining multiple different data slices
- 2. Effect exacerbated by buffer bloat

Solution #2: Data Sharing

Intra-Process Performance

Share data intelligently instead of partitioning it beforehand

Revised indexing process

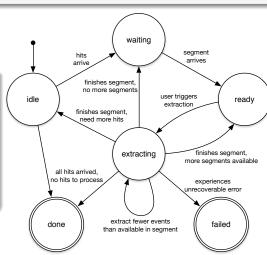
- Do not "inflate" data just to partition it for workers
- GPGPU-style: make data available "globally" in workers
 - Disburdens CPU: no time needed to transform data
 - Reduces memory footprint: data exists exactly once

Problem #3: Messaging Complexity

Complex Query processing

A QUERY actor receives messages from ARCHIVE, INDEX, and CLIENT

- ▶ QUERY acts as "iterator" over the archive for index hit
- ▶ Maintains lots of state for incremental extraction of matches
- Difficult to implement correctly when messages arrive in any order
- ▶ Many if-then-else constructs clutter main logic


Solution #3: State Machine

Finite State Machine

Implement stateful logic with a finite state machine

Revised query process

- Each state defines a set of valid messages
- Explicit transitions make readable and clear code
- libcppa primitive: become/unbecome

Summary & Lessons Learned

Lesson #1

Programming distributed systems feels like "networking"

- ► Flow control prevents imbalanced sender/receiver speeds
- ▶ Bufferbloat increases latency and causes processing spikes
- ▶ Explicit state machines keep asynchronous messaging manageable

Lesson #2

GPGPU programming style fits well for intra-process concurrency

- ▶ Make full data available to all workers
- ► Each worker is responsible for extracting its relevant data

Outline

- 1. System Overview: VAST
- 2. Architecture: Ingestion, Indexing, and Query
 - Ingestion
 - Indexing
 - Query
- 3. Experience
- 4. Demo

Thank You... Questions?

FIN

https://github.com/mavam/vast https://github.com/Neverlord/libcppa

IRC at Freenode: #vast, #libcppa