

Ownership of Memory

Guidelines for Dynamic Allocation

By David Stone

The Basics

● Automatic storage ("the
stack")

T t;

● Free store ("the heap")

new T();

std::make_unique<T>();

std::make_shared<T>();

Hierarchy of Ownership

1) Automatic variables

2) std::unique_ptr

3) std::shared_ptr

Note: raw pointers are not on this list

"Large" values and rvalues

● For this presentation, a "large" value refers to the value
returned by sizeof

● std::vector<T> is small

– 24 bytes on 64-bit

– Regardless of number of elements
● std::array<char, 1000> is large

– 1000 bytes

"Large" values and rvalues

● Small values are cheap to move

● Large values are expensive to move

Why dynamic?

Run-time sized collections

● std::vector

● std::deque

● std::map

Polymorphism

● Dynamic allocation is required for runtime polymorphism in
function returns

– auto create_object() -> std::unique_ptr<Base>;
● Usually required for member and local variables

– std::unique_ptr<Base> m_some_object;
● Generally not required for function parameters

When move is not an optimization of copy

● Some objects must remain at the same address (reference
stability)

– std::mutex

– Anything that other objects reference

– Multithreaded code
● std::unique_ptr<T> is always movable, even if T is not

When move is an optimization of move

● std::unique_ptr<T> is always fast to move, even when T is
not

– std::array<int, 10000> is slow to move
● std::unique_ptr<T> requires constant stack space of one

pointer

– std::array<std::array<int, 1024>, 1024> will probably
overflow your stack

Cache-friendliness, sequence

● std::deque<T>

● std::list<T>

● std::vector<std::unique_ptr<T>>

– moving_vector
● std::vector<T>

Source of data

● https://bitbucket.org/davidstone/containers

● Compiled with g++ 4.8.2

– Ofast

– march=native

– fipa-pta

– funsafe-loop-optimizations

– flto

https://bitbucket.org/davidstone/containers

Cache-friendliness, sequence

0 100000 200000 300000 400000 500000 600000
0

10

20

30

40

50

60

70

80

90

100

Time to search and insert into middle

1-byte elements

deque

list

moving_vector

vector

Number of elements

Ti
m

e
 (

s
e

co
n

d
s

)

Cache-friendliness, sequence

0 100000 200000 300000 400000 500000
0

10

20

30

40

50

60

70

80

90

100

Time to search and insert into middle

10-byte elements

deque

list

moving_vector

vector

Number of elements

Ti
m

e
 (

s
e

co
n

d
s

)

Cache-friendliness, sequence

0 50000 100000 150000 200000 250000
0

10

20

30

40

50

60

70

80

90

100

Time to search and insert into middle

40-byte elements

deque

list

moving_vector

vector

Number of elements

Ti
m

e
 (

s
e

co
n

d
s

)

Cache-friendliness, sequence

0 50000 100000 150000 200000
0

10

20

30

40

50

60

70

80

90

100

Time to search and insert into middle

50-byte elements

deque

list

moving_vector

vector

Number of elements

Ti
m

e
 (

s
e

co
n

d
s

)

Cache-friendliness, sequence

0 50000 100000 150000 200000
0

10

20

30

40

50

60

70

80

90

100

Time to search and insert into middle

60-byte elements

deque

list

moving_vector

vector

Number of elements

Ti
m

e
 (

s
e

co
n

d
s

)

Cache-friendliness, sequence

0 50000 100000 150000 200000
0

10

20

30

40

50

60

70

80

90

100

Time to search and insert into middle

100-byte elements

deque

list

moving_vector

vector

Number of elements

Ti
m

e
 (

s
e

co
n

d
s

)

Cache-friendliness, sequence

0 50000 100000 150000 200000
0

10

20

30

40

50

60

70

80

90

100

Time to search and insert into middle

200 byte elements

deque

list

moving_vector

vector

Number of elements

Ti
m

e
 (

s
e

co
n

d
s

)

Cache-friendliness, sequence

0 20000 40000 60000 80000 100000 120000 140000 160000 180000
0

10

20

30

40

50

60

70

80

90

100

Time to search and insert into middle

500-byte elements

deque

list

moving_vector

vector

Number of elements

Ti
m

e
 (

s
e

co
n

d
s

)

Cache-friendliness, sequence

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
0

10

20

30

40

50

60

70

80

90

100

Time to search and insert into middle

1000 byte elements

deque

list

moving_vector

vector

Number of elements

Ti
m

e
 (

s
e

co
n

d
s

)

Cache-friendliness, sequence

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

1,000,000 elements

deque

list

moving_vector

vector

Size (bytes)

Ti
m

e
 (

m
in

u
te

s
)

Explanation of results

● Locality of reference

– Explains plain vector's performance

Explanation of results

● Pipelining

std::list

● If you are iterating, do not use std::list

● If you are not iterating, do not use std::list

Cache-friendliness, associative

● std::map<T>

● sorted std::vector<T>

– unstable_flat_map
● sorted std::vector<std::unique_ptr<T>>

– stable_flat_map

Cache-friendliness, associative

No performance graphs.

=(

Cache-friendliness, associative

● unstable_flat_map provides the fastest lookup

● std::map provides the fastest insertion

● For small element sizes, unstable_flat_map is faster for
everything else (including batch insertion)

– Small is around 100 bytes

Cache-friendliness, associative

● stable_flat_map was never the best choice

● Why does it perform so much worse at associative tasks?

Optional values

● What would a function look like that needs to output an
optional value?

– What does it look like if it just needs to return "by
reference"

● Which interface to use?

– Which is easier?

– Which is faster?

Optional values

● Typically, use something like the proposed std::optional

– https://github.com/akrzemi1/Optional
● std::optional<T> is always at least as large as T

● Null std::unique_ptr<T> is sizeof(T *)

https://github.com/akrzemi1/Optional

Do not be afraid of "by value"

● The compiler will elide copies

– Return value optimization
● Most moves are cheap

Returning a dynamically allocated value

● auto u() -> std::unique_ptr<T>;

● auto s() -> std::shared_ptr<T>;

Constructing a shared_ptr

● std::shared_ptr<T>(new T());

● std::make_shared<T>();

● The importance of std::make_shared

● The difference between libraries and applications

Value semantics

● std::shared_ptr is last on the hierachy

● indirection is powerful

– With great power comes great difficulty in
comprehension

● std::shared_ptr<T const> is not as bad

Scope-Bound Resource Management

● Destructor is a fundamental part of C++

● Structured code automatically creates nested life times

– Functions, not goto everywhere
● Do not use std::shared_ptr to avoid structuring code

● std::shared_ptr is used with multi-threading

– When you are modeling something that must hold onto
data, but the duration is dependent on run-time factors

Raw Pointers

● Raw pointers never own memory

● Smart pointers do not deprecate raw pointers

● Raw pointers reference memory

● A pointer is an optional reference

Compilation firewall

#include <lots_of_headers>

class Class {

public:

 functions();

private:

 Thing1 m_1;

 Thing2 m_2;

 ...

 ThingN m_n;

};

Compilation firewall

class Class {

public:

 functions();

private:

 class Impl;

 std::unique_ptr<Impl>

};

Compilation firewall

● Minimize compile times

● Minimize recompilation

● Stable ABI

● If used with care, can work around binary compatibility
problems in third-party libraries

Summary

● Use a smart pointer only for:

– Dynamic polymorphism when you cannot
achieve this without dynamic allocation

– Minimizing compilation dependencies (PImpl)
– Optional values that could be very large
– Enabling moves on non-movable types
– Optimizing moves on slow-to-move types

● In all other cases, use an automatic variable
● Prefer cache-friendly data structures

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

