
  

Ownership of Memory

Guidelines for Dynamic Allocation
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The Basics

● Automatic storage ("the 
stack")

T t;

● Free store ("the heap")

new T();

std::make_unique<T>();

std::make_shared<T>();



  

Hierarchy of Ownership

1) Automatic variables

2) std::unique_ptr

3) std::shared_ptr

Note: raw pointers are not on this list



  

"Large" values and rvalues

● For this presentation, a "large" value refers to the value 
returned by sizeof

● std::vector<T> is small

– 24 bytes on 64-bit

– Regardless of number of elements
● std::array<char, 1000> is large

– 1000 bytes



  

"Large" values and rvalues

● Small values are cheap to move

● Large values are expensive to move



  

Why dynamic?



  

Run-time sized collections

● std::vector

● std::deque

● std::map



  

Polymorphism

● Dynamic allocation is required for runtime polymorphism in 
function returns

– auto create_object() -> std::unique_ptr<Base>;
● Usually required for member and local variables

– std::unique_ptr<Base> m_some_object;
● Generally not required for function parameters



  

When move is not an optimization of copy

● Some objects must remain at the same address (reference 
stability)

– std::mutex

– Anything that other objects reference

– Multithreaded code
● std::unique_ptr<T> is always movable, even if T is not



  

When move is an optimization of move

● std::unique_ptr<T> is always fast to move, even when T is 
not

– std::array<int, 10000> is slow to move
● std::unique_ptr<T> requires constant stack space of one 

pointer

– std::array<std::array<int, 1024>, 1024> will probably 
overflow your stack 



  

Cache-friendliness, sequence

● std::deque<T>

● std::list<T>

● std::vector<std::unique_ptr<T>>

– moving_vector
● std::vector<T>



  

Source of data

● https://bitbucket.org/davidstone/containers

● Compiled with g++ 4.8.2

– Ofast

– march=native

– fipa-pta

– funsafe-loop-optimizations

– flto

https://bitbucket.org/davidstone/containers


  

Cache-friendliness, sequence
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Cache-friendliness, sequence
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Cache-friendliness, sequence
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Cache-friendliness, sequence
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Cache-friendliness, sequence
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Cache-friendliness, sequence
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Cache-friendliness, sequence
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Cache-friendliness, sequence
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Cache-friendliness, sequence
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Cache-friendliness, sequence
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Explanation of results

● Locality of reference

– Explains plain vector's performance



  

Explanation of results

● Pipelining



  

std::list

● If you are iterating, do not use std::list

● If you are not iterating, do not use std::list



  

Cache-friendliness, associative

● std::map<T>

● sorted std::vector<T>

– unstable_flat_map
● sorted std::vector<std::unique_ptr<T>>

– stable_flat_map



  

Cache-friendliness, associative

No performance graphs.

=(



  

Cache-friendliness, associative

● unstable_flat_map provides the fastest lookup

● std::map provides the fastest insertion

● For small element sizes, unstable_flat_map is faster for 
everything else (including batch insertion)

– Small is around 100 bytes



  

Cache-friendliness, associative

● stable_flat_map was never the best choice

● Why does it perform so much worse at associative tasks?



  

Optional values

● What would a function look like that needs to output an 
optional value?

– What does it look like if it just needs to return "by 
reference"

● Which interface to use?

– Which is easier?

– Which is faster?



  

Optional values

● Typically, use something like the proposed std::optional

– https://github.com/akrzemi1/Optional
● std::optional<T> is always at least as large as T

● Null std::unique_ptr<T> is sizeof(T *)

https://github.com/akrzemi1/Optional


  

Do not be afraid of "by value"

● The compiler will elide copies

– Return value optimization
● Most moves are cheap



  

Returning a dynamically allocated value

● auto u() -> std::unique_ptr<T>;

● auto s() -> std::shared_ptr<T>;



  

Constructing a shared_ptr

● std::shared_ptr<T>(new T());

● std::make_shared<T>();



  

● The importance of std::make_shared

● The difference between libraries and applications



  

Value semantics

● std::shared_ptr is last on the hierachy

● indirection is powerful

– With great power comes great difficulty in 
comprehension

● std::shared_ptr<T const> is not as bad



  

Scope-Bound Resource Management

● Destructor is a fundamental part of C++

● Structured code automatically creates nested life times

– Functions, not goto everywhere
● Do not use std::shared_ptr to avoid structuring code

● std::shared_ptr is used with multi-threading

– When you are modeling something that must hold onto 
data, but the duration is dependent on run-time factors



  

Raw Pointers

● Raw pointers never own memory

● Smart pointers do not deprecate raw pointers

● Raw pointers reference memory

● A pointer is an optional reference



  

Compilation firewall

#include <lots_of_headers>

class Class {

public:

    functions();

private:

    Thing1 m_1;

    Thing2 m_2;

    ...

    ThingN m_n;

};



  

Compilation firewall

class Class {

public:

    functions();

private:

    class Impl;

    std::unique_ptr<Impl>

};



  

Compilation firewall

● Minimize compile times

● Minimize recompilation

● Stable ABI

● If used with care, can work around binary compatibility 
problems in third-party libraries



  

Summary

● Use a smart pointer only for:

– Dynamic polymorphism when you cannot 
achieve this without dynamic allocation

– Minimizing compilation dependencies (PImpl)
– Optional values that could be very large
– Enabling moves on non-movable types
– Optimizing moves on slow-to-move types

● In all other cases, use an automatic variable
● Prefer cache-friendly data structures
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