
Value Semantics
and Range Algorithms

Efficiency and Composability

Chandler Carruth chandlerc@gmail.com

Functional and Composable
Range Algorithms

(or some other, better title...)

Some background...

In C++11 we are left to guess what a range is
by squinting at [iterator.ranges] and the
specification from range-based for loops.

● Can call std::begin and std::end on a
range to get begin and end iterators

● Can pass them to a range based for loop

What are Ranges?

What are Ranges?

With C++14, we almost got this baked into the
library with range-based constructors to
containers.

Fundamentally:
a begin and end iterator

(for now)

Fundamentally:
a begin and end iterator

(for now)

(sorry Eric)

What aren’t Ranges?
What can’t they do?

This is a big open question…

We should debate this more in Sebastian’s talk
later this week...

What aren’t Ranges?

A replacement for
iterators
(sorry Andrei)

What does an output
range look like?

(and I hope that’s OK…)

I don’t have all the
answers

Mutable, owning ranges.

● Mutability of the range, not the elements
● std::array and int[N] are not

containers
○ And it turns out they make life really hard...

What are Containers?

What are value-semantics?

The term value-semantics means subtly
different things to different people. I’m not trying
to argue, just give a working definition here.

What are value-semantics?

A type has value-semantics when it is “regular”.
● Simple behavioral model:

○ copy, move, assign, compare
○ copies compare equal, move preserves identity

What are value-semantics?

What is a value-semantic interface?

When a function interacts with your data as a
value-semantic object.
● Accepts one or more values
● Returns zero or one values
● Doesn’t require calling multiple methods,

passing in their results, with back-pointers to
mutate the source.

What is a value-semantic interface?

What isn’t a value-semantic interface

What is a functional interface?

What is a functional interface?

… really? ;]

What is a functional interface?

Not going to dive into the formal side...

The core relevant to this discussion:
● Accepts an input parameter
● Returns the result
● No members, or in-place mutation

What is a functional interface?

This is the trivial and obvious way to satisfy my
desire for an interface predicated on value
semantics.

Putting it together for algorithms

● Functional - separating inputs and outputs
● Composable - because we’re using ranges
● Value Semantics - ranges are regular

And this is the point:

void f(const unordered_map &map_a,
 const unordered_map &map_b) {
 for (auto ab_entry : slice(
 sort(zip(transform(

 map_a,
 [](auto e) { return e->first; }),
 transform(
 map_a,
 [](auto e) {
 return map_b[e->first];
 }))),
 0, 10)) {
 // do stuff...
 }
}

auto f(std::vector<T> my_vec) {

 return slice(sort(std::move(my_vec)), 0, 10);

}

Some algorithms already close

● {all,any,none}_of
● count
● find, find_end
● search
● is_*
● partition_point
● {lower,upper}_bound,

binary_search,
equal_range

● includes
● {min,max,minmax}

_element
● accumulate
● inner_product

Some algorithms map easily

● transform
● shuffle
● unique
● partition1

● sort
● nth_element
● merge, set_*

● *_heap
● {next,prev}_permutation
● iota
● adjacent_difference
● partial_sum

1The interface for this one isn’t obvious, but my
plan is to return a tuple of ranges.

Some will need very different APIs

fill, generate, and for_each notably
● Need a good generator API
● Eric Niebler has investigated a C++ range

comprehension interface

These will serve the same purpose, regardless
of API differences.

Remaining algorithms?

Mostly force-composed or irrelevant:
● foo_if, foo_n, etc are force-composed
● copy, move are replaced by assignment

(yes, there are also some really weird outliers I
have skipped…)

Enter the range manipulators

These don’t mutate the values, but the range
itself!
● slice
● filter
● zip
● concat

slice(<range>, begin, end[, stride])

Think Python’s slice:
 +---+---+---+---+---+---+

 | S | l | i | c | e | ! |

 +---+---+---+---+---+---+

 0 1 2 3 4 5 6

-6 -5 -4 -3 -2 -1

Helps flesh out algorithms we’ve missed:
● copy_n + algorithm becomes a slice
● reverse becomes a negative stride

Provides a path toward specialized algorithmic
improvements:
● partial_sort can implement slice(sort(...), …)

slice(<range>, begin, end[, stride])

filter(<range>, [](auto x) { … })

Only visits elements for which the the lambda
returns true.
● Provides all of the _if variant algorithms
● Also makes filtered iteration a breeze

zip(<range1>, …, <rangeN>)

Produces a range of an N-ary tuple
● Easy associative container interfacing
● Can use a tuple of references for efficiency
● Can compose with strided slice to zip

adjacent elements

concat(<range1>, …, <rangeN>)

Produces a range spanning elements across
each argument range
● Easy “append” replacement

Composability! Composability!

I know, the horse is dead.
But this really is the point.
● These range operations are primarily

powerful in how they can compose
● Through composition we can factor the

algorithm space much better

What about efficiency?
Because copies are what make C++ slow,

right?

No.
moving right along...

See the copy algorithm, it was not added idly.
● Even more prevalent with slice

○ Can often copy a small subsequence quickly
● Many data sets are small and not a problem
● Invariants are good, and so we sometimes

can’t and don’t want to mutate data

Sometimes, we need to copy

Move semantics for algorithms

For all the cases where you don’t need to copy!
● Good model already in C++ for moves
● Very small extension to pure functional

interface conceptually
● If done well we can round trip back to our

own storage and simulate “in place” algos!

Implementation experience helps

To help address this concern, I have a very
experimental / prototype implementation.
● Focuses on a small subset (slice, filter, sort)
● Really bad code currently (sorry)
● Illustrates move semantic technique working
● Uncovered quite a few gotchas!
● Hopefully cleaned up and open soon (LLVM)

Implementation experience helps

That said, beware… I’m an optimizer hacker.
● I could use folks’ help who are better at this
● I may have made things far harder than

strictly necessary…

Still it seems to work, so hopefully it serves to
motivate further investigation.

Model for R-Value Algorithm

1. Return a special range containing a
container of the same type as the input

2. Move the input into the internal storage
3. (Eventually) apply the algorithm in-place

using existing library
a. Defer applying the algorithm so we can match away

composed patterns

template <typename R> struct remove_cv_and_ref {

 typedef typename std::remove_cv<

 typename std::remove_reference<R>::type>::type type;

};

template <typename R, typename P>

detail::filtered_range<

 typename remove_cv_and_ref<R>::type,

 typename std::remove_reference<P>::type,

 std::is_rvalue_reference<R &&>::value>

filter(R &&range, P &&predicate) {

 return detail::filtered_range<

 typename remove_cv_and_ref<R>::type,

 typename std::remove_reference<P>::type,

 std::is_rvalue_reference<R &&>::value>(

 std::forward<R>(range),

 std::forward<P>(predicate));

}

template <typename R, typename P>
class filtered_rvalue_range : private scratch_rvalue_range_base<R>,
 public filtered_range_base<R, P> {
protected:
 template <typename P2>
 filtered_rvalue_range(R &&Range, P2 &&Predicate)
 : filtered_rvalue_range::scratch_rvalue_range_base(
 std::move(Range)),
 filtered_rvalue_range::filtered_range_base(
 std::begin(this->Range), std::end(this->Range),
 std::forward<P2>(Predicate)) {}

public:
 typedef typename filtered_rvalue_range::iterator iterator;

 // ...
}

Model for R-Value Algorithm

Also need to store the result back to a variable
without copying for temporary algorithms.
● Detect conversion to a container which can

be move constructed from the incoming type
○ Move directly from internal storage to result

● Detect conversion to any container which
can be constructed from begin/end pair
○ Move elements (but not range)

 template <typename ResultT,
 typename std::enable_if<std::is_constructible<ResultT, R>::value,
 int>::type = 0>
 operator ResultT() && {
 this->Range.erase(
 std::remove_if(std::begin(this->Range),
 std::end(this->Range),
 [&](const decltype(*std::begin(this->Range)) &x) {
 return !this->Predicate(x);
 }),
 std::end(this->Range));

 return ResultT(std::move(this->Range));
 }

 template <typename ResultT,
 typename std::enable_if<
 !std::is_constructible<ResultT, R>::value &&
 std::is_constructible<ResultT, iterator, iterator>::value,
 int>::type = 0>
 operator ResultT() && {
 return ResultT(std::make_move_iterator(this->begin()),
 std::make_move_iterator(this->end()));
 }

Model for R-Value Algorithm

What about auto and capturing an algorithm?
● That’s fine, we’ve moved the storage into the

result
● Can even continue to have efficiency by

moving back out of a variable

Model for L-Value Algorithm

Ironically, this is a bit trickier.
● A simple model: eagerly copy

○ Then can model the same as an R-Value algorithm
○ All transforms can be done in-place

● This is even required in some cases where
there is no incremental and efficient
algorithm
○ Notably: sort, partition, and shuffle

Model for L-Value Algorithm

But all that copying will be terribly wasteful.
Instead, we could make (some) be lazy!
● Store just enough information to produce the

desired view of the input
● Copy only when the algorithm necessitates it
● The core range mutations are perfect for

this!
○ slice, filter, zip, concat

(this is exactly what I set out to implement)

RIGHT?

Model for L-Value Algorithms

Yep. Except for the nightmare of complexity.
● A lazy slice is tricky if the input’s underlying

iterator is bidirectional, much less an
input_iterator

● Lazily filtering requires lowering from random
access to bidirectional, making common
operations linear time.

Model for L-Value Algorithms

● concat requires a reasonably robust variant
to handle lazily walking different ranges
○ And have to use the lowest common denominator

● zip at least is easy to make lazy…

So, with all this complexity, maybe copying is
the right way to go...

Model for L-Value Algorithms

Except that you can’t.

 Model for L-Value Algorithms

Implementing slice for InputIterators (or
InputRanges, or InputIterables) is … hard.
● Can’t increment past the start position
● Have to track the distance to the end

position out-of-band
○ Wasn’t this one of the hacks with iterators that

ranges were supposed to fix?

And filter is just as bad.

Model for L-Value Algorithms

You can see this problem elsewhere
● Today, sort is only applicable for random-

access iterators as an algorithm
○ Doesn’t really make sense: std::list::sort?

For sort (and friends), need to pick a container
● Another need for range traits for the default
● Can cast inputs to temporaries for control

Model for L-Value Algorithms

Can upgrade to a container to cope with input
iterators lacking backing store for slice, filter
● Still efficiency reasons to be lazy where we

can
○ If we only iterate, strictly cheaper
○ Keeps expression templates on the table

● Primarily upgrade on conversion or
composition

Careful conversion is a theme...

Need to carefully control conversion
● Per-algorithm logic necessary often
● Per-container logic necessary often
● This is only do-able with conservatively

enabled conversion operators
● Completely broken by N3513

○ Glad it didn’t make it into C++14!

Still, may not be faster
than today’s algorithms

But that’s not the point!

void f(const unordered_map &map_a, const unordered_map &map_b) {
 for (auto ab_entry : slice(
 sort(zip(transform(map_a,
 [](auto e) { return e->first; }),
 transform(map_a,
 [](auto e) { return map_b[e->first]; }))),
 0, 10)) {
 // do stuff...
 }
}

Expression templates?

● Probably necessary to make compositional
patterns provide efficiency guarantees

● Potential for significant further improvements
● But not necessary for this to be a success

Also one critical assumption:

Moves are free

Assumption: Moves are free

Not true today, sadly. But they are often close.
● Eradicate throwing moves
● Make moves elidable

○ Support move-aside, move-back with elision
○ Support identity swapping to elide moves

■ TODO: example!

This is just the start...

Range assignment:
● slice(x, 4, 8) = y;
● zip(x, y) = my_map;

Splice supporting ranges?

Some obvious next steps:

Some obvious next steps:

There are certainly more algorithms needed:
● split: range -> range-of-ranges
● join: range-of-ranges -> range
● fold[rl]: functional list primitive
● ???

Also, are there better layerings or factorings?

Questions?

OK, I lied.
Let’s talk what a range is.

Two iterators is insane.

Two iterators is insane.

Eric Niebler’s blog posts about this are
excellent, polite, and undersell the importance
of this.

Andrei gets the severity of the problem right,
but takes it to an extreme (gasp).

One iterator is quite nice.

We need to have a position.
● It is fundamental.
● It is the obvious return of many operations.
● That’s OK.

The end iterator is a disaster.

See Eric’s posts:
http://ericniebler.com/2014/02/16/delimited-ranges/
http://ericniebler.com/2014/02/18/infinite-ranges/

I won’t repeat them, he does a better job. Go read them.
Done? Great.

http://ericniebler.com/2014/02/16/delimited-ranges/
http://ericniebler.com/2014/02/16/delimited-ranges/
http://ericniebler.com/2014/02/18/infinite-ranges/
http://ericniebler.com/2014/02/18/infinite-ranges/

The Iterable concept is close

http://ericniebler.com/2014/02/21/introducing-iterables/

This is close.
● It trades the end iterator for a differently

typed end iterator
○ Makes sentinels much cleaner

But there is an even simpler generalization...

http://ericniebler.com/2014/02/21/introducing-iterables/
http://ericniebler.com/2014/02/21/introducing-iterables/

<iterator, bool(iterator)>

A range consists of an iterator and a
termination predicate.

More Questions?

