-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathticket.py
309 lines (240 loc) · 11 KB
/
ticket.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
import torch
import numpy as np
import time
import argparse
from pruning.utils import prune_rate
from pruning.methods import filter_prune, weight_prune
from utils.utils_attacks import test_madry, madry_train_one_epoch
from utils.utils_trades import trades_train_one_epoch
from utils.utils_pruning import get_init_masks
from utils.utils_training import train_one_epoch, train_one_epoch_l1, test
from utils.utils_mixtrain import test_vra, mixtrain_parallel_one_epoch
from utils.utils_IBP import test_ibp_vra, ibp_one_epoch
from utils.utils import Logger, load_cifar_dataset, load_cifar_dataset_no_validation, set_seed
from utils.utils_noise import train_one_noise_epoch, test_noise
from train import train_model, load_model, load_model_type
from config import argparse_config
import random
import sys
from torchsummary import summary
def path_config(args):
args.model_path = os.path.join(args.model_path + args.dataset + "/")
path = os.path.join(args.model_path + args.model_type + "/")
if args.create_init:
args.init_path = os.path.join(path + "init/")
if args.create_init and (not os.path.exists(args.init_path)):
os.makedirs(args.init_path)
print("making dir:", args.init_path)
args.log_path = None
if args.init_type == "pure":
args.init_path = os.path.join(args.init_path + args.init_type + "_"\
+ args.model_type + "_init" + ".pth")
else:
args.init_path = os.path.join(args.init_path + args.init_type + "_"\
+ args.model_type + "_init" + str(args.init_step) + ".pth")
else:
if args.model_name is None:
args.model_name = "pruned"
if args.finetune_method == "noise":
args.model_name = "pruned_sd"+str(args.noise_sd)
if args.finetune_method == "trades":
args.model_name = "pruned_beta"+str(args.trades_beta)
if not args.norm:
args.model_name = args.model_name + "_nn"
if not os.path.exists(path + "last/"):
os.makedirs(path + "last/")
print("making dir:", path + "last/")
if args.finetune_method == "nat":
args.last_model_path = os.path.join(path + "last/" + args.init_type + "_" + args.model_name + ".pth")
else:
args.last_model_path = os.path.join(path + "last/" + args.init_type + "_" + args.finetune_method + str(args.train_epochs) +"_" + args.model_name + ".pth")
if args.init_type == "pure":
args.init_path = os.path.join(path + "init/" + args.init_type + "_"\
+ args.model_type + "_init" + ".pth")
path = os.path.join(path + args.finetune_method +\
"/pruned"+str(args.n_pruning_steps)+"_epoch" +\
str(args.train_epochs)+ "_r" + str(args.max_pruning_ratio)\
+ "/init_" + args.init_type\
+ "/")
else:
args.init_path = os.path.join(path + "init/" + args.init_type + "_"\
+ args.model_type + "_init" + str(args.init_step) + ".pth")
path = os.path.join(path + args.finetune_method +\
"/pruned"+str(args.n_pruning_steps)+"_epoch" + \
str(args.train_epochs) + "_r" + args.max_pruning_ratio +\
"/init_" + args.init_type\
+ "_" + str(args.init_step) + "/")
if not os.path.exists(path):
os.makedirs(path)
print("making dir:", path)
args.model_path = os.path.join(path + args.model_name + ".pth")
args.mask_path = os.path.join(path + args.model_name + "_mask_r" + str(args.max_pruning_ratio) + ".npy")
args.log_path = os.path.join(path + args.model_name + ".log")
args.results_path = os.path.join(path + args.model_name + "_result.npy")
return args
def create_pruning_steps(args, type='decreasing'):
"""
Create pruning schedule with args.n_pruning_steps and args.max_pruning_ratio.
type: uniform: increase the pruning ratio with a unform step size.
decreasing: increase the pruning ration with a decreasing step size.
"""
assert type in ['uniform', 'decreasing']
if type == 'uniform':
steps = np.linspace(0, args.max_pruning_ratio, args.n_pruning_steps)
if type == 'decreasing':
t = np.array([i/(i+10) for i in range(1, args.n_pruning_steps+1)])
steps = t/np.max(t)*args.max_pruning_ratio
return steps
def create_init_model(m, args, loader_train, loader_valid, loader_test):
if args.init_type == "pure":
torch.save(m.model.state_dict(), args.init_path)
print("original init model saved to", args.init_path)
exit()
mask = get_init_masks(net)
train_model(m, mask, loader_train, loader_valid, loader_test, args,\
train_type=args.init_type, verbose=args.verbose)
exit()
def update_last_enhance_method(args):
if args.enhance_method is not None:
args.train_epochs = 60
args.finetune_method = args.enhance_method
args.eps_step = 2./255.
args.attack_iter = 10
print("train_epoch is updated to be 30 and finetune_method is updated to " + args.enhance_method)
def ticket_pruning_with_finetuning(m, args, loader_train, loader_test):
is_vra = False
if args.finetune_method in ["mixtrain", "naive"]:
is_vra = True
'''
# Evaluate the initial weights
'''
net = m.model
load_model(net, args.init_path)
if args.dataset == "cifar":
summary(net, (3, 32, 32))
#print("Without pruning, the model is tested as:")
#test_madry(net, loader_test, args)
#if is_vra: test_vra(net, loader_test, args, n_steps=2)
steps = create_pruning_steps(args, type='decreasing')
ea, era, vra = [], [], []
mask = get_init_masks(net)
print()
print("Pruning ratio = 0.00")
if args.parallel:
print("Model parallel!")
m.model = torch.nn.DataParallel(net).cuda()
e1, e2 = train_model(m, mask, loader_train, loader_valid, loader_test, args,\
train_type=args.finetune_method, verbose=args.verbose)
ea.append(e1)
era.append(e2)
if is_vra:
vra.append(1-test_vra(net, loader_test, args, n_steps=2))
for ratio in steps:
print()
if ratio == steps[-1]:
update_last_enhance_method(args)
torch.save(m.model.state_dict(), args.last_model_path)
print("last pruned model before enhance saved to", args.last_model_path)
exit()
print("Pruning ratio = {:.3f}".format(ratio))
'''
# Calculate the new mask from the finetuned network
'''
if args.prune_method == "unstructured":
# Unstructured pruning
m.set_masks(mask)
mask = weight_prune(m, ratio, verbose=False)
if args.prune_method == "structured":
# Structured pruning
m.set_masks(mask)
mask = filter_prune(m, mask, ratio, verbose=False)
if ratio == steps[-1]:
np.save(args.mask_path, np.array(mask))
print("mask saved in", args.mask_path)
'''
# Reset the model to the initial weights but with the new mask
'''
net = m.model
load_model(net, args.init_path)
'''
# Finetune the model with the new mask and the initial weights
'''
e1, e2 = train_model(m, mask, loader_train, loader_valid, loader_test, args,\
train_type=args.finetune_method, verbose=args.verbose)
m.set_masks(mask)
'''
# Evaluate the finetuned model
'''
#e1, e2 = test_madry(net, loader_test, args)
ea.append(e1)
era.append(e2)
if is_vra:
vra.append(1-test_vra(net, loader_test, args, n_steps=2))
#torch.save(m.model.state_dict(), args.model_path)
#print("noise model saved to", args.model_path)
return [[0]+list(steps), ea, era, vra]
# python ticket.py vgg16 pure
# --finetune_method nat (finetune method)
# --enhance_method None (=finetune_method, the method used for last step of finetune)
# --gpu 0 (=0)
# --learning_rate (=0.01, the lr used for enhancement)
# --n_pruning_steps (=1, numebr of iterative pruning steps)
# --train_epochs (=60, the epoch used for enhancement)
# --model_name (=default, will save to model_name.log/pth)
# --create_init (=False, just save the model if True)
# --init_step (=0 if pure, number of rewinding)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
args = argparse_config(parser)
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if args.seed is None:
args.seed = 7
set_seed(args.seed)
if args.finetune_method == "nat":
loader_train, loader_valid, loader_test = load_cifar_dataset(args, data_dir='./data')
else:
loader_train, loader_valid, loader_test = load_cifar_dataset_no_validation(args, data_dir='./data')
assert args.finetune_method in ["nat", "nat_l1", "madry", "mixtrain", "fgsm",\
"naive", "sym", "noise", "trades", "trades_fgsm"],\
"no such finetuning method!"
assert args.enhance_method in [None, "nat", "madry", "mixtrain", "fgsm",\
"naive", "sym", "noise", "trades", "trades_fgsm"],\
"no such finetuning method!"
assert args.train_method in ["nat", "nat_l1", "madry", "mixtrain", "fgsm",\
"naive", "sym", "noise", "trades", "trades_fgsm"],\
"no such train method!"
assert args.prune_method in ["unstructured", "structured"]
assert args.init_type in ["nat", "madry", "pure", "trades"]
assert args.init_step > 0, "please use init_type=pure if init_step is 0"
m = load_model_type(args)
net = m.model
args = path_config(args)
if args.log_path is not None:
log = open(args.log_path, "w")
sys.stdout = Logger(log)
if torch.cuda.is_available():
print('CUDA enabled.')
net = net.cuda()
for k in args.__dict__:
print(k, ":", args.__dict__[k])
print("config:")
if args.create_init:
print("Start creating initial model")
print("Init model will be saved to", args.init_path)
create_init_model(m, args, loader_train, loader_valid, loader_test)
exit()
#print("Start ticket pruning on model", args.model_path + args.train_method + "_vgg16_init100.pth")
print("Start ticket pruning on model", args.init_path)
print("Pruning method:", args.prune_method)
print("Finetune method:", args.finetune_method)
print("Pruned model will be saved in", args.model_path)
print("Final mask will be saved in", args.mask_path)
print("Log will be saved in", args.log_path)
print()
# Main function for ticket pruning
results = ticket_pruning_with_finetuning(m, args, loader_train, loader_test)
print(results)
#np.save(args.results_path, np.array(results))
#torch.save(m.model.state_dict(), args.model_path)