forked from Lightning-AI/pytorch-lightning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
wandb.py
219 lines (182 loc) · 7.94 KB
/
wandb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Weights and Biases Logger
-------------------------
"""
import os
from argparse import Namespace
from typing import Any, Dict, Optional, Union
import torch.nn as nn
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment
from pytorch_lightning.utilities import _module_available, rank_zero_only
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.warnings import WarningCache
_WANDB_AVAILABLE = _module_available("wandb")
try:
import wandb
from wandb.wandb_run import Run
except ImportError:
# needed for test mocks, these tests shall be updated
wandb, Run = None, None
class WandbLogger(LightningLoggerBase):
r"""
Log using `Weights and Biases <https://www.wandb.com/>`_.
Install it with pip:
.. code-block:: bash
pip install wandb
Args:
name: Display name for the run.
save_dir: Path where data is saved (wandb dir by default).
offline: Run offline (data can be streamed later to wandb servers).
id: Sets the version, mainly used to resume a previous run.
version: Same as id.
anonymous: Enables or explicitly disables anonymous logging.
project: The name of the project to which this run will belong.
log_model: Save checkpoints in wandb dir to upload on W&B servers.
prefix: A string to put at the beginning of metric keys.
sync_step: Sync Trainer step with wandb step.
experiment: WandB experiment object. Automatically set when creating a run.
\**kwargs: Additional arguments like `entity`, `group`, `tags`, etc. used by
:func:`wandb.init` can be passed as keyword arguments in this logger.
Example::
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning import Trainer
wandb_logger = WandbLogger()
trainer = Trainer(logger=wandb_logger)
Note: When logging manually through `wandb.log` or `trainer.logger.experiment.log`,
make sure to use `commit=False` so the logging step does not increase.
See Also:
- `Tutorial <https://colab.research.google.com/drive/16d1uctGaw2y9KhGBlINNTsWpmlXdJwRW?usp=sharing>`__
on how to use W&B with PyTorch Lightning
- `W&B Documentation <https://docs.wandb.ai/integrations/lightning>`__
"""
LOGGER_JOIN_CHAR = '-'
def __init__(
self,
name: Optional[str] = None,
save_dir: Optional[str] = None,
offline: Optional[bool] = False,
id: Optional[str] = None,
anonymous: Optional[bool] = False,
version: Optional[str] = None,
project: Optional[str] = None,
log_model: Optional[bool] = False,
experiment=None,
prefix: Optional[str] = '',
sync_step: Optional[bool] = True,
**kwargs
):
if wandb is None:
raise ImportError(
'You want to use `wandb` logger which is not installed yet,' # pragma: no-cover
' install it with `pip install wandb`.'
)
if offline and log_model:
raise MisconfigurationException(
f'Providing log_model={log_model} and offline={offline} is an invalid configuration'
' since model checkpoints cannot be uploaded in offline mode.\n'
'Hint: Set `offline=False` to log your model.'
)
super().__init__()
self._name = name
self._save_dir = save_dir
self._offline = offline
self._id = version or id
self._anonymous = 'allow' if anonymous else None
self._project = project
self._log_model = log_model
self._prefix = prefix
self._sync_step = sync_step
self._experiment = experiment
self._kwargs = kwargs
# logging multiple Trainer on a single W&B run (k-fold, resuming, etc)
self._step_offset = 0
self.warning_cache = WarningCache()
def __getstate__(self):
state = self.__dict__.copy()
# args needed to reload correct experiment
state['_id'] = self._experiment.id if self._experiment is not None else None
# cannot be pickled
state['_experiment'] = None
return state
@property
@rank_zero_experiment
def experiment(self) -> Run:
r"""
Actual wandb object. To use wandb features in your
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
Example::
self.logger.experiment.some_wandb_function()
"""
if self._experiment is None:
if self._offline:
os.environ['WANDB_MODE'] = 'dryrun'
self._experiment = wandb.init(
name=self._name,
dir=self._save_dir,
project=self._project,
anonymous=self._anonymous,
id=self._id,
resume='allow',
**self._kwargs
) if wandb.run is None else wandb.run
# offset logging step when resuming a run
self._step_offset = self._experiment.step
# save checkpoints in wandb dir to upload on W&B servers
if self._save_dir is None:
self._save_dir = self._experiment.dir
return self._experiment
def watch(self, model: nn.Module, log: str = 'gradients', log_freq: int = 100):
self.experiment.watch(model, log=log, log_freq=log_freq)
@rank_zero_only
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
params = self._convert_params(params)
params = self._flatten_dict(params)
params = self._sanitize_callable_params(params)
self.experiment.config.update(params, allow_val_change=True)
@rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
assert rank_zero_only.rank == 0, 'experiment tried to log from global_rank != 0'
metrics = self._add_prefix(metrics)
if self._sync_step and step is not None and step + self._step_offset < self.experiment.step:
self.warning_cache.warn(
'Trying to log at a previous step. Use `WandbLogger(sync_step=False)`'
' or try logging with `commit=False` when calling manually `wandb.log`.'
)
if self._sync_step:
self.experiment.log(metrics, step=(step + self._step_offset) if step is not None else None)
elif step is not None:
self.experiment.log({**metrics, 'trainer_step': (step + self._step_offset)})
else:
self.experiment.log(metrics)
@property
def save_dir(self) -> Optional[str]:
return self._save_dir
@property
def name(self) -> Optional[str]:
# don't create an experiment if we don't have one
return self._experiment.project_name() if self._experiment else self._name
@property
def version(self) -> Optional[str]:
# don't create an experiment if we don't have one
return self._experiment.id if self._experiment else self._id
@rank_zero_only
def finalize(self, status: str) -> None:
# offset future training logged on same W&B run
if self._experiment is not None:
self._step_offset = self._experiment.step
# upload all checkpoints from saving dir
if self._log_model:
wandb.save(os.path.join(self.save_dir, "*.ckpt"))