
The PhyloSim package

Botond Sipos and Tim Massingham

October 12, 2023

Contents

1 Getting help 2

2 Basic examples 2

2.1 Simulating substitutions under the JC69 model . 2

2.1.1 Compact example . 2

2.1.2 “Unrolled” example . 3

2.2 Simulating substitutions under the HKY model . 5

2.3 Simulating among-sites rate variation . 7

2.3.1 Simulating under the discrete gamma (GTR+dΓ) model 7

2.3.2 Simulating under the invariants and discrete gamma (GTR+I+dΓ) model 9

2.4 Simulating indels . 10

2.4.1 Insertion and deletions having the same length distribution 10

2.4.2 Insertion and deletions having different length distributions 11

2.4.3 Simulating indels under selective constraints . 12

2.5 Simulating partitions . 14

2.6 Simulating heterotachy . 15

2.7 Simulating many replicates . 18

2.8 Simulating many replicates in parallel . 19

3 Advanced examples 21

3.1 Simulating “domains” and heterogeneous evolution . 21

3.2 Evolving codon sequences . 27

3.3 Implementing a new process . 32

3.4 Evolving a genomic region containing a “gene” . 34

4 Details of the fast field deletion model 41

1

1 Getting help

• PhyloSim is extensively documented; the documentation of the PhyloSim class (as invoked by
help("PhyloSim")) is probably a good entry point for beginners and also contains some more
basic examples.

• Serious users might consider reading all class documentations which provide more focused examples.

• Additional example scripts can be found at http://github.com/sbotond/phylosim/tree/master/examples

• The ll() method list the methods and virtual field implemented in the immediate class of an
object which is useful as “proto-documentation”.

2 Basic examples

The following examples illustrate how to set up simple simulations.

First load the package:

> library(phylosim)

> set.seed(833)

Create the tree files used in the basic examples:

> cat("((t1:0.3,t2:0.3):0.2,t3:0.1);",file="3taxa.nwk")

> cat("((t1:0.3,t2:0.3):0.2,(t3:0.1,t4:0.1):0.4);",file="4taxa.nwk")

2.1 Simulating substitutions under the JC69 model

We will simulate the evolution of nucleotide sequences of length 50 along a tree with 3 tips under the
JC69 model. The following two examples are essentially equivalent.

2.1.1 Compact example

> Simulate(PhyloSim(

+ root.seq=sampleStates(NucleotideSequence(len=50,proc=list(list(JC69())))),

+ phylo=read.tree("3taxa.nwk")

+))$alignment

Simulating edge 1 of 4

Simulating edge 2 of 4

Simulating edge 3 of 4

Simulating edge 4 of 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Root node 4 "T" "C" "T" "T" "T" "G" "A" "A" "G" "A" "G" "T" "G" "T" "C" "G" "T" "T" "C"

t3 "T" "C" "T" "C" "T" "G" "A" "A" "G" "A" "G" "A" "G" "T" "C" "G" "T" "T" "C"

Node 5 "T" "G" "T" "T" "T" "G" "A" "A" "G" "A" "G" "T" "G" "T" "A" "G" "T" "T" "C"

t2 "T" "G" "T" "T" "T" "G" "C" "T" "G" "A" "C" "T" "A" "T" "T" "G" "T" "T" "C"

t1 "T" "T" "T" "T" "T" "G" "A" "A" "G" "A" "G" "A" "G" "T" "A" "G" "T" "T" "C"

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Root node 4 "C" "A" "G" "G" "C" "C" "T" "T" "T" "T" "G" "T" "G" "A" "C" "T" "C" "A" "T"

t3 "C" "A" "G" "G" "C" "C" "T" "T" "T" "T" "G" "T" "G" "A" "C" "T" "C" "A" "T"

2

http://github.com/sbotond/phylosim/tree/master/examples

Node 5 "C" "A" "A" "G" "A" "A" "T" "T" "T" "T" "G" "T" "G" "A" "C" "G" "T" "C" "T"

t2 "C" "A" "A" "G" "A" "A" "T" "T" "T" "C" "C" "T" "A" "A" "C" "G" "T" "G" "G"

t1 "C" "A" "A" "G" "A" "A" "A" "T" "T" "T" "G" "A" "G" "A" "C" "C" "G" "C" "T"

39 40 41 42 43 44 45 46 47 48 49 50

Root node 4 "A" "C" "T" "G" "C" "A" "G" "T" "A" "T" "A" "A"

t3 "A" "C" "T" "G" "C" "A" "G" "T" "A" "T" "A" "A"

Node 5 "A" "C" "T" "G" "C" "A" "G" "T" "A" "T" "C" "A"

t2 "C" "C" "T" "G" "C" "A" "A" "T" "A" "T" "C" "G"

t1 "A" "A" "C" "G" "G" "A" "G" "T" "A" "T" "C" "A"

2.1.2 “Unrolled” example

Construct the root sequence object:

> root.seq<-NucleotideSequence(length=50)

Print out the root sequence:

> print(root.seq)

[1] "??"

Note, that all states are still undefined.

Construct a JC69 substitution process object:

> p<-JC69()

Attach the substitution process to root sequence:

> attachProcess(root.seq,p)

Sample the site states from the equilibrium distribution of the JC69 substitution process:

> sampleStates(root.seq)

Print out the root sequence, now with the sampled states:

> print(root.seq)

[1] "CCGTAGTAGGCACGTCGCCGTCGTCTAGTGACCCGACGGGATTAGTGATT"

Read in tree from file using APE:

> tree<-read.tree("3taxa.nwk")

Plot the tree:

> plot(tree)

3

t1

t2

t3

Construct a PhyloSim object:

> sim<-PhyloSim()

Set the phylo object:

> sim$phylo<-tree

Set the root sequence:

> sim$rootSeq<-root.seq

Run the simulation:

> Simulate(sim)

Simulating edge 1 of 4

Simulating edge 2 of 4

Simulating edge 3 of 4

Simulating edge 4 of 4

Display the resulting alignment matrix:

4

> sim$alignment

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Root node 4 "C" "C" "G" "T" "A" "G" "T" "A" "G" "G" "C" "A" "C" "G" "T" "C" "G" "C" "C"

t3 "C" "C" "G" "T" "A" "G" "T" "A" "G" "G" "C" "C" "A" "G" "T" "C" "G" "C" "C"

Node 5 "C" "C" "G" "T" "A" "G" "T" "A" "G" "G" "C" "G" "C" "G" "T" "C" "G" "A" "C"

t2 "T" "C" "G" "T" "A" "G" "T" "A" "A" "C" "T" "G" "C" "G" "T" "C" "G" "A" "C"

t1 "C" "T" "T" "T" "T" "G" "T" "A" "G" "G" "G" "T" "C" "C" "T" "C" "G" "A" "C"

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Root node 4 "G" "T" "C" "G" "T" "C" "T" "A" "G" "T" "G" "A" "C" "C" "C" "G" "A" "C" "G"

t3 "G" "T" "G" "G" "T" "C" "T" "A" "G" "T" "C" "A" "C" "C" "C" "G" "A" "C" "G"

Node 5 "G" "A" "C" "G" "T" "C" "T" "G" "C" "T" "A" "A" "C" "C" "C" "G" "A" "C" "G"

t2 "C" "A" "C" "G" "T" "C" "T" "G" "C" "C" "A" "G" "G" "C" "C" "G" "A" "C" "G"

t1 "T" "A" "C" "G" "T" "A" "T" "G" "C" "T" "G" "A" "G" "T" "C" "G" "A" "C" "G"

39 40 41 42 43 44 45 46 47 48 49 50

Root node 4 "G" "G" "A" "T" "T" "A" "G" "T" "G" "A" "T" "T"

t3 "G" "G" "A" "T" "T" "A" "G" "T" "G" "C" "T" "T"

Node 5 "G" "C" "A" "T" "T" "T" "G" "T" "G" "A" "T" "T"

t2 "G" "C" "A" "G" "T" "C" "A" "T" "G" "C" "T" "T"

t1 "T" "C" "A" "G" "A" "T" "G" "T" "G" "A" "T" "T"

2.2 Simulating substitutions under the HKY model

Construct an HKY substitution process object:

> p<-HKY(rate.params=list("Alpha"=10,"Beta"=2),

+ base.freqs=c(4,3,2,1)/10

+)

Get a plot of the instantaneous substitution matrix and equilibrium distribution of the p process (bubble
plot):

> plot(p,scale=0.5)

5

G

A

C

T

T C A G
To:

F
ro

m
:

Size:

0.00

0.25

0.50

0.75

1.00

Rate matrix

0.950

0.975

1.000

1.025

1.050

T C A G
Symbol

P
ro

b:

Size:

0.1

0.2

0.3

0.4

Equlibrium distribution

Construct the root sequence, attach the substitution process to root sequence via the constructor and
sample states:

> root.len50.seq<-NucleotideSequence(length=50,processes=list(list(p)))

> sampleStates(root.len50.seq)

Print out root sequence:

> print(root.len50.seq)

[1] "TTGTATTTAGTCTGTCAATTGTAATACCTCTTCCCACAGTGACTTTACTT"

Construct a PhyloSim object, set the phylo object and the root sequence:

> sim<-PhyloSim(

+ root.seq=root.len50.seq,

+ phylo=read.tree("3taxa.nwk")

+);

Run simulation:

> Simulate(sim)

6

Simulating edge 1 of 4

Simulating edge 2 of 4

Simulating edge 3 of 4

Simulating edge 4 of 4

Save the resulting alignment (fasta format):

> saveAlignment(sim,file="HKY_sim.fas")

Plot the alignment alongside the tree (including sequences at ancestral nodes):

> plot(sim,num.pages=1)

T T G T A T T T A G T C T G T C A A T T G T A A T A C C T C T T C C C A C A G T G A C T T T A C T T

T A C T A T T T A G T C T G T C A A T T G T A A T A C C T C T T C C C A C A G T G A C T T T A T T T

T T C G A T T T A G C C C G C C A A T T G T A A T A T C T C T T C C T A C A G T G A C T G C A T T T

T T T G T T T C A G C T C G C C A A T T G T A A T A T T T T T T C T C A C A G T G A C T G C A T T T

T T C A A T T T A G C C C G T T A A C T T T A T T A T C C T C T T C T A C C G T G A C C G C A T T T

Root node 4

t3

Node 5

t2

t1

0 10 20 30 40 50

Root node 4

t3

Node 5

t2

t1

0.0 0.1 0.2 0.3 0.4 0.5

2.3 Simulating among-sites rate variation

2.3.1 Simulating under the discrete gamma (GTR+dΓ) model

Construct a GTR subsection process object:

> p<-GTR(

+ rate.params=list(

+ "a"=1, "b"=2, "c"=3,

+ "d"=1, "e"=2, "f"=3

+),

+ base.freqs=c(2,2,1,1)/6

+)

Summary of object p:

> summary(p)

Name: Anonymous

Id: GTR:Anonymous:140448546133040

Alphabet:

Type: Nucleotide

Symbols: T C A G

Rate parameters: a = 1, b = 2, c = 3, d = 1, e = 2, f = 3

Unscaled rate matrix:

T C A G

T -1.1666667 0.3333333 0.3333333 0.5000000

C 0.3333333 -0.8333333 0.1666667 0.3333333

A 0.6666667 0.3333333 -1.5000000 0.5000000

G 1.0000000 0.6666667 0.5000000 -2.1666667

7

Equilibrium distribution:

T C A G

Prob: 0.3333333 0.3333333 0.1666667 0.1666667

Site specific parameters (1):

Id: rate.multiplier

Name: Rate multiplier

Type: numeric

Default value: 1

Construct the root sequence, attach substitution process:

> root.seq<-NucleotideSequence(length=50,processes=list(list(p)))

Sample rate multipliers from a discrete gamma distribution with 4 categories and shape parameter 0.5:

> plusGamma(root.seq,p,0.5)

Get the sampled rate multipliers:

> getRateMultipliers(root.seq,p);

[1] 0.82026848 0.25191592 0.25191592 2.89442785 2.89442785 0.82026848 0.03338775

[8] 0.25191592 0.82026848 2.89442785 0.82026848 0.25191592 0.82026848 2.89442785

[15] 0.25191592 0.25191592 0.25191592 2.89442785 0.82026848 0.03338775 0.03338775

[22] 2.89442785 0.82026848 0.82026848 0.03338775 0.03338775 2.89442785 0.82026848

[29] 0.03338775 2.89442785 0.82026848 0.82026848 0.03338775 0.82026848 0.03338775

[36] 0.03338775 2.89442785 2.89442785 2.89442785 0.25191592 0.03338775 0.82026848

[43] 0.82026848 0.03338775 0.25191592 0.25191592 0.82026848 0.03338775 2.89442785

[50] 2.89442785

Construct the PhyloSim object, sample states and set the phylo object:

> sim<-PhyloSim(

+ root.seq=sampleStates(root.seq),

+ phylo=read.tree("3taxa.nwk")

+)

Run the simulation:

> Simulate(sim)

Simulating edge 1 of 4

Simulating edge 2 of 4

Simulating edge 3 of 4

Simulating edge 4 of 4

Plot the alignment alongside the tree, skip sequences at ancestral nodes:

> plot(sim,num.pages=1,plot.ancestors=FALSE)

8

A C G C A T C T G T T A T C G C T C T A C A C A C A A G A G A T G G G A C T C T A C G C G T T G T C

A C G C C A C T T A C A T C G C T C T A C A T G C A A G A C C T G G G A A C T T A C C C G T T G G C

A C G C T T C T C T C A T C G C T C T A C G T A C A A G A C C T G G G A T C C T A C G C G T T G T C

t3

t2

t1

0 10 20 30 40 50

t3

t2

t1

0.0 0.1 0.2 0.3 0.4 0.5

Save the resulting alignment, omitting sequences at internal nodes:

> saveAlignment(sim,file="Gamma_sim.fas",skip.internal=TRUE)

2.3.2 Simulating under the invariants and discrete gamma (GTR+I+dΓ) model

We will reuse the root sequence object and GTR object from the previous example. The process is
already attached, but we need to clear the states to have a new root sequence.

Clear the states of the root sequence object and sample a set of new states:

> clearStates(root.seq)

> sampleStates(root.seq)

Sample rate multipliers from a +I+dΓ model:

> plusInvGamma(root.seq,p,pinv=0.8,shape=0.5)

Deal with the rest of the simulation (note that for variety we use a random coalescent tree in this
example):

> sim<-Simulate(

+ PhyloSim(

+ root.seq=root.seq,

+ phylo=rcoal(3)

+)

+)

Simulating edge 1 of 4

Simulating edge 2 of 4

Simulating edge 3 of 4

Simulating edge 4 of 4

> plot(sim,num.pages=1,plot.ancestors=FALSE)

A C T T T C C C T A C C A T A G C C T T T C C C T C C T G C C A G C G C C G A C G G T C C T C C T C

A C T T T C C C G G C G A T A G C C T T T C C C T C C C G C C A G C G C C G A T G T T C C T C C T C

A C T T T C C C G G C G A T A G C C T T T C C C T C C C G C C A G C G C C G A T G T T C C T C C T C

t1

t2

t3

0 10 20 30 40 50

t1

t2

t3

0.0 0.5 1.0

Save the resulting alignment, skip sequences from internal nodes:

> saveAlignment(sim,file="InvGamma_sim.fas",skip.internal=TRUE)

9

2.4 Simulating indels

2.4.1 Insertion and deletions having the same length distribution

Set up the substitution process and the root sequence:

> p<-JC69()

> root.seq<-NucleotideSequence(len=50,processes=list(list(p)))

> sampleStates(root.seq)

Construct a deletion process proposing deletions with rate 0.25 according to a discrete length distribution:

> d<-DiscreteDeletor(

+ rate=0.25,

+ sizes=c(1,2),

+ probs=c(1/2,1/2)

+)

Construct an insertion process proposing insertions with rate 0.25 according to a discrete length distri-
bution:

> i<-DiscreteInsertor(

+ rate=0.25,

+ sizes=c(1,2),

+ probs=c(1/2,1/2)

+)

Set the template sequence for the insertion process:

> i$templateSeq<-NucleotideSequence(length=2,processes=list(list(p)))

The states of the template sequence are undefined. The actual states will be sampled from the equilibrium
distribution of the attached substitution process before performing the insertion.

Attaching the indel processes:

> attachProcess(root.seq,d)

> attachProcess(root.seq,i)

Construct the PhyloSim object, set the phylo object (random coalescent tree for three taxa) and run the
simulation:

> sim<-Simulate(PhyloSim(

+ root.seq=root.seq,

+ phylo=rcoal(3)

+))

Simulating edge 1 of 4

Simulating edge 2 of 4

Simulating edge 3 of 4

Simulating edge 4 of 4

Plot the alignment alongside the tree, skip sequences at ancestral nodes:

10

> plot(sim,num.pages=1,plot.ancestors=FALSE)

A T T G G T C G A C G G G G C G A G A C A T G A G A G G C T C C A G G C G G C A G T C T T A A G G A T C G A C

A A G A T A C C A A G G G C T C C A G A G A A T A A C A T T A A A A C C G C G C T G A T C C A G A G A T G C C T A G A T T G C C A

C A G T A A A C A G G A G T T T T G T A A C G C C C C G T A G G T G A A C C T A C C G A C T C T C C G T C C G T C A

t2

t1

t3

0 30 60 90

t2

t1

t3

0.0 0.5 1.0

Save the resulting alignment, skip sequences from internal nodes:

> saveAlignment(sim,file="indel1_sim.fas",skip.internal=TRUE)

2.4.2 Insertion and deletions having different length distributions

The following code reuses the objects constructed in the previous example to simulate deletions and
insertions with different length distributions.

Construct a new insertion process proposing insertions of Cs with rate 0.5 according to a discrete length
distribution:

> i2<-DiscreteInsertor(

+ rate=0.25,

+ sizes=c(1,2,3,4),

+ probs=c(1,2,3,4)/10,

+ template.seq=NucleotideSequence(string="C")

+)

Clear the states of the root sequence object:

> clearStates(root.seq)

Define a new set of processes (p - substitution, d - deletion, i2 - the new insertion process) for the root
sequence using the processes virtual field:

> root.seq$processes<-list(list(i2, d, p))

Construct the PhyloSim object, sample states, set the phylo object and run the simulation:

> sim<-Simulate(PhyloSim(

+ root.seq=sampleStates(root.seq),

+ phylo=read.tree("3taxa.nwk")

+))

Simulating edge 1 of 4

Simulating edge 2 of 4

Simulating edge 3 of 4

Simulating edge 4 of 4

Plot the alignment alongside the tree, skip sequences at ancestral nodes:

> plot(sim,num.pages=1,plot.ancestors=FALSE)

11

T T T G C T A T C A G C A A G G C G G G T C C G A G C G A C G G C G C C A T T A C G A A A T C T

A G G C T A T C T G T A A A G T C A T C G T A G C C C C C C G C C C C T C A C C C A A A A G G A A A G G C

G C T A C A C C C C C T G C C T T G C G A C G C C A G T G G A A G C C C C C C A C C C C C A C C C G G C C C G A C A A T T

t3

t2

t1

0 20 40 60

t3

t2

t1

0.0 0.1 0.2 0.3 0.4 0.5

Save the resulting alignment, skip sequences from internal nodes:

> saveAlignment(sim,file="indel2_sim.fas",skip.internal=TRUE)

2.4.3 Simulating indels under selective constraints

Set up the substitution process and the root sequence:

> p<-JC69()

> root.seq<-NucleotideSequence(len=100,processes=list(list(p)))

> sampleStates(root.seq)

Construct a deletion process proposing deletions with rate 1 according to a discrete length distribution:

> d<-DiscreteDeletor(

+ rate=1,

+ sizes=c(1,2,3),

+ probs=c(3/6,2/6,1/6)

+)

Construct an insertion process proposing insertions with rate 1 according to a discrete length distribution:

> i<-DiscreteInsertor(

+ rate=1,

+ sizes=c(1,2,3),

+ probs=c(3/6,2/6,1/6)

+)

Set the template sequence for the insertion process:

> i$templateSeq<-NucleotideSequence(length=2,processes=list(list(p)))

Attaching the indel processes:

> attachProcess(root.seq,d)

> attachProcess(root.seq,i)

Set deletion tolerance values:

> setDeletionTolerance(root.seq,d,0.08 + c(1/2:51,1/51:2))

Plot deletion tolerance values:

> plotParametersAtSites(root.seq,d,"deletion.tolerance")

12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Plot of parameter deletion.tolerance for process DiscreteDeletor:Anonymous:140448551331904

Position

V
al

ue

1 7 14 22 30 38 46 54 62 70 78 86 94

Set insertion tolerance values:

> setInsertionTolerance(root.seq,i,0.08 + c(1/2:51,1/51:2))

Construct the PhyloSim object, read phylo object from file:

> sim<-Simulate(PhyloSim(

+ root.seq=root.seq,

+ phylo=read.tree("4taxa.nwk")

+))

Simulating edge 1 of 6

Simulating edge 2 of 6

Simulating edge 3 of 6

Simulating edge 4 of 6

Simulating edge 5 of 6

Simulating edge 6 of 6

Plot the alignment alongside the tree, skip sequences at ancestral nodes:

> plot(sim,plot.ancestors=FALSE)

13

C T G A C C C G T G G T C C G

G T G A C C C G T A G C C G

T T A A T T C G C T T T G

G T G A T C C C T A A C T A

T T G T T G T T C A C C T G T T

A A G T T G T T C A A C T G T C

C A C A G G C C C T T A G G C

A T T A G G T C A C C A G A C

T C C T G G G C G G T T C T G A

A C C T G G T C G G T T C C G A

C T C G G G T G A G T C G G T G

C T C A G A G T A C G T A

G T G A T T G G T T G T C C A C

G T C A T T G G G T G G C C A C

C T T C G G T G T G G G C T C

A C T A G T G G G C G A C A C

A T A C A G G A A A G G A T A T

A T A C G C G A A A G T A T A T

A A C C C C C T A A T G G A A G

T G T T A C T T A G T G G T A G

A C G T C G G T A T G C T T A G

A C G T C G G T A T G C C G A G

C G T C G T T A T G C T C A

T A G G G T A T C C G C A

G T A C T C C A G A

G T A C T A C A

G T G G C C C A

C G G C C A C A

1−
16

17−
32

33−
48

49−
64

65−
80

81−
96

97−
112

0 4 8 12 16

t4

t3

t2

t1

t4

t3

t2

t1

t4

t3

t2

t1

t4

t3

t2

t1

t4

t3

t2

t1

t4

t3

t2

t1

t4

t3

t2

t1

0.0 0.1 0.2 0.3 0.4 0.5

t4

t3

t2

t1

t4

t3

t2

t1

t4

t3

t2

t1

t4

t3

t2

t1

t4

t3

t2

t1

t4

t3

t2

t1

t4

t3

t2

t1

Save the resulting alignment, skip sequences from internal nodes:

> saveAlignment(sim,file="indel3_sim.fas",skip.internal=TRUE)

2.5 Simulating partitions

The following example demonstrates how to use the processes and site- and process-specific parameters
to simulate “partitions” with different properties.

We will simulate four partitions:

• Partition 1: sites in range 1:25 evolving by JC+dΓ with a shape parameter α = 1

• Partition 2: sites in range 26:50 evolving by JC+dΓ with a shape parameter α = 0.5

• Partition 3: sites in range 51:75 evolving by HKY+dΓ with a shape parameter α = 1

• Partition 4: sites in range 76:100 evolving by HKY+dΓ with a shape parameter α = 0.5

First construct two substitution process objects:

> jc69<-JC69()

> hky<-HKY(rate.params=list("Alpha"=5,"Beta"=2),

+ base.freqs=c(4,3,2,1)/10

+)

Construct a root sequence object of length 100:

> root.seq<-NucleotideSequence(length=100)

Attach process jc69 to range 1:50:

> attachProcess(root.seq,jc69,1:50)

Attach process hky to range 51:100:

> attachProcess(root.seq,hky,51:100)

Sample rate multipliers in the four partitions:

14

> plusGamma(root.seq,jc69,1,1:25)

> plusGamma(root.seq,jc69,0.5,26:50)

> plusGamma(root.seq,hky,1,51:75)

> plusGamma(root.seq,hky,0.5,76:100)

Construct the PhyloSim object, sample states, set root sequence, set the phylo object (random coalescent
tree for three taxa) and run the simulation:

> sim<-Simulate(PhyloSim(

+ root.seq=sampleStates(root.seq),

+ phylo=rcoal(3)

+))

Simulating edge 1 of 4

Simulating edge 2 of 4

Simulating edge 3 of 4

Simulating edge 4 of 4

Plot the alignment alongside the tree, skip sequences at ancestral nodes:

> plot(sim,num.pages=1,plot.ancestors=FALSE)

A A A A C C A A G A G G C T C T C T T A G C G T G C C G A C G C T A G A C G A C A A C T G T G A A C A A C T T C T C T A C T A T C T T C C T T A G G T T C A T C A T C C T C C A T T A T G C G G T T C A

A A A C C G A A A A C G A G C T A G C A C T C T G G C C G C G C C A C A A G G C A A A T G A T A A T A C T T T C A C T A C A A T T T T C C T T A T C T C C A C G T C C T T C T A T A T T G A T G A C T A

A A A C C G A A A C C G A G C T G A A A C C T T G G C G G C G C G A C A A G G C A T G T G A A G A T A C C T T C A G T A C A A T C T C T C T T T T C T C C A C G T C C T C C T A T A T T G A T G A C T A

t1

t3

t2

0 25 50 75 100

t1

t3

t2

0.0 0.2 0.4

2.6 Simulating heterotachy

Set up the substitution process:

> p<-F84(base.freqs=c(1,2,3,4));

> p$kappa<-1;

Set up the root sequence:

> root.seq<-NucleotideSequence(length=50,processes=list(list(p)));

Sample the rate multipliers from a +dΓ model with shape parameter 1.0:

> plusGamma(root.seq,p,1)

Read a tree from file:

> tree<-read.tree("4taxa.nwk")

Construct the PhyloSim object, sample states, set root sequence, and set the phylo object:

15

> sim<-PhyloSim(

+ root.seq=sampleStates(root.seq),

+ phylo=tree

+)

A “node hook” is a function which accepts a Sequence object through the named argument “seq” and
returns a Sequence object. After simulating the branch leading to the node, the resulting Sequence

object is passed to the node hook and the returned object is used to simulate the downstream branches.

Create a node hook function which will create heterotachy by resampling the site rates from the +dΓ
model with shape parameter 1.0:

> node.hook <- function(seq) {

+

+ if(!isAttached(seq$sites[[1]],p)){

+ return(seq);

+ }

+

+ cat("Resampling rate multipliers!\n");

+ plusGamma(seq,p,1)

+ return(seq)

+ }

Plot the PhyloSim object:

> plot(sim)

16

t1

t2

t3

t4

5

6

7

Notice that node 6 is the ancestor of taxa t1 and t2.

Attach the hook to node 6:

> attachHookToNode(sim, node = 6, fun = node.hook)

Run the simulation:

> Simulate(sim)

Simulating edge 1 of 6

Resampling rate multipliers!

Simulating edge 2 of 6

Simulating edge 3 of 6

Simulating edge 4 of 6

Simulating edge 5 of 6

Simulating edge 6 of 6

Plot the alignment alongside the tree, skip sequences at ancestral nodes:

> plot(sim,num.pages=1,plot.ancestors=FALSE)

17

C A A C T G T G T C T G C A T A A G G G T G A A G G T G G G T A A A G A G C T G G G A T C A G A G C

C A A C T G T A T C T G A A T C G G G G T G A A G G A G C G T A A A G A G C G G G G A T C A G A G C

G A G A T G G G T G A G G G T A A G G G A G G A G G T A G G C A A A A G G G G C T A G T A G G A A C

G A C C T G G G T A A G C G G A A G G G A A G A A G T A C G C A A A A A G G G C G G G T C A A T G C

t4

t3

t2

t1

0 10 20 30 40 50

t4

t3

t2

t1

0.0 0.1 0.2 0.3 0.4 0.5

2.7 Simulating many replicates

Constructing Sequence objects with a large number of sites is expensive, so it is a good idea to do that
outside the cycle when simulating many replicates with the same root sequence length.

Reusing the root sequence object is easy, but do not forget to do the modifications needed to get inde-
pendent simulations (e.g. clearing the states of the root sequence, resampling the rate multipliers).

The following code illustrates how to simulate many replicates under the JC69+dΓ model.

Construct the root sequence object and attach the substitution process:

> p<-JC69();

> root.seq<-NucleotideSequence(length=10)

> attachProcess(root.seq,p)

Read the required phylogeny from file (this will remain fixed in the simulated replicates):

> tree<-read.tree("3taxa.nwk");

Simulate three replicates. Note that the states are cleared and resampled; the rate multipliers are
resampled as well. The resulting alignments are stored in files aln 1.fas, aln 2.fas, aln 3.fas.

> for(i in 1:3){

+ cat(paste("\n\nSimulating replication ",i,"\n\n",sep=""))

+

+ clearStates(root.seq)

+ plusGamma(root.seq,p,0.25)

+ sampleStates(root.seq)

+

+ sim<-Simulate(PhyloSim(

+ root.seq=root.seq,

+ phylo=tree

+))

+

+ saveAlignment(sim,file=paste("aln_",i,".fas",sep=""))

+ }

Simulating replication 1

Simulating edge 1 of 4

Simulating edge 2 of 4

Simulating edge 3 of 4

Simulating edge 4 of 4

Simulating replication 2

18

Simulating edge 1 of 4

Simulating edge 2 of 4

Simulating edge 3 of 4

Simulating edge 4 of 4

Simulating replication 3

Simulating edge 1 of 4

Simulating edge 2 of 4

Simulating edge 3 of 4

Simulating edge 4 of 4

2.8 Simulating many replicates in parallel

The the speed of the above method for simulating replicates can be improved on a multicore machine by
running many replicates in parallel by using the mclapply method from the parallel package (currently
not available on Windows operating systems).

Under default settings, the mclapply method launches one replication per core and this approach needs
enough memory to run all of them in parallel.

The following code illustrates how to simulate many replicates in parallel under the JC69+dΓ model.

Construct the root sequence object and attach the substitution process:

> p<-JC69();

> root.seq<-NucleotideSequence(length=50)

> attachProcess(root.seq,p)

Read the required phylogeny from file (this will remain fixed in the simulated replicates):

> tree<-read.tree("3taxa.nwk");

Function to simulate a single replication:

> sim.replicate<-function(i){

+ name<-paste("replication_",i,sep="")

+ clearStates(root.seq)

+ plusGamma(root.seq,p,0.25)

+ sampleStates(root.seq)

+

+ sim<-Simulate(PhyloSim(

+ name=name,

+ root.seq=root.seq,

+ phylo=tree,

+),

+ quiet=TRUE

+)

+

+ saveAlignment(sim,file=paste("aln_",i,".fas",sep=""))

+ return(sim)

+ # return(TRUE)

+ }

19

Note that the states are cleared and resampled; the rate multipliers are resampled as well. The resulting
alignments are stored in files aln 1.fas, aln 2.fas, alni 3.fas.

Memory can be saved by throwing away the objects generated by the replication by returning TRUE (or
any other fixed value) from the sim.replicate function.

Load the parallel package if available:

> have.mcore <- is.element("parallel", installed.packages()[,1])

> if(have.mcore){

+ library(parallel)

+ }

Run replicates in parallel, print the resulting PhyloSimobjects:

> if(have.mcore){

+ nr.replicates<-3

+ res.objects<-mclapply(1:nr.replicates, sim.replicate)

+ print(res.objects)

+ }

[[1]]

[1] "PhyloSim:replication_1:140448821695456"

[[2]]

[1] "PhyloSim:replication_2:140448825557768"

[[3]]

[1] "PhyloSim:replication_3:140448804817984"

Print one of the resulting alignments:

> if(have.mcore){

+ print(res.objects[[1]]$alignment)

+ }

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Root node 4 "C" "T" "G" "T" "A" "G" "T" "T" "T" "T" "C" "C" "T" "G" "A" "T" "T" "C" "A"

t3 "C" "T" "G" "T" "A" "G" "T" "T" "T" "T" "C" "C" "T" "G" "A" "T" "T" "C" "A"

Node 5 "C" "T" "G" "T" "A" "G" "T" "T" "T" "T" "C" "C" "A" "G" "T" "T" "T" "C" "A"

t2 "C" "A" "G" "A" "A" "G" "T" "A" "T" "T" "C" "T" "G" "G" "T" "T" "A" "C" "A"

t1 "C" "T" "G" "A" "A" "G" "T" "T" "T" "T" "C" "C" "A" "G" "T" "T" "T" "C" "A"

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Root node 4 "C" "G" "G" "T" "C" "G" "A" "A" "C" "G" "A" "A" "C" "A" "C" "C" "G" "T" "A"

t3 "C" "G" "G" "T" "C" "G" "A" "A" "C" "G" "A" "A" "C" "A" "C" "C" "G" "T" "A"

Node 5 "C" "G" "G" "T" "C" "G" "A" "T" "C" "G" "T" "A" "A" "A" "C" "C" "G" "T" "A"

t2 "C" "G" "G" "G" "C" "T" "C" "G" "C" "G" "T" "A" "G" "A" "C" "C" "G" "T" "A"

t1 "C" "A" "G" "T" "C" "T" "A" "T" "C" "G" "A" "A" "T" "A" "C" "C" "G" "G" "A"

39 40 41 42 43 44 45 46 47 48 49 50

Root node 4 "T" "G" "A" "G" "G" "T" "A" "A" "C" "T" "T" "A"

t3 "T" "G" "A" "G" "G" "T" "A" "A" "C" "G" "T" "A"

Node 5 "T" "G" "A" "T" "G" "T" "A" "A" "C" "T" "T" "A"

t2 "T" "C" "C" "C" "G" "T" "A" "A" "C" "T" "T" "A"

t1 "T" "G" "T" "G" "G" "T" "A" "A" "C" "T" "T" "A"

>

20

3 Advanced examples

Creating the tree file used in the advanced examples:

> cat("(((t2:0.1231,t4:0.1231):0.2131,(t3:0.0284,t5:0.0284):0.3078):0.1698,t1:0.5060);",file="smalldemotree.nwk")

3.1 Simulating “domains” and heterogeneous evolution

The following code illustrates how to set up a more complicated simulation of amino acid sequences
involving “domains” and heterogeneous evolution.

Use the ll() method to list the methods and virtual fields implemented in the Site class:

> ll(Site())

Class: Site

Inherits from: PSRoot Object

Fields (0):

Virtual fields (7):

alphabet

ancestral

events

processes

sequence

state

totalRate

Methods implemented in Site (8):

as.character

attachProcess

checkConsistency

detachProcess

flagTotalRate

is

isAttached

summary

Enable the “fast & careless mode”:

> PSIM_FAST <- TRUE

Construct substitution process objects:

> wag <- WAG()

> jtt <- JTT()

> lg <- LG()

> pam <- PAM()

Summary of the object wag:

> summary(wag)

Name: Anonymous

Id: WAG:Anonymous:140448546280664

21

Alphabet:

Type: Amino acid

Symbols: A R N D C Q E G H I L K M F P S T W Y V

PAML data file:: ./PAMLdat/wag.dat

Unscaled rate matrix: not shown

Equilibrium distribution:

A R N D C Q E G

Prob: 0.08662791 0.043972 0.0390894 0.05704511 0.0193078 0.0367281 0.05805891 0.08325181

H I L K M F P S

Prob: 0.0244313 0.048466 0.08620901 0.06202861 0.0195027 0.0384319 0.0457631 0.06951791

T W Y V

Prob: 0.06101271 0.0143859 0.0352742 0.07089561

Site specific parameters (1):

Id: rate.multiplier

Name: Rate multiplier

Type: numeric

Default value: 1

Get a plot of the instantaneous substitution matrix and equilibrium distribution of the wag process
(bubble plot):

> plot(wag, scale = 0.8)

V

Y

W

T

S

P

F

M

K

L

I

H

G

E

Q

C

D

N

R

A

A R N D C Q E G H I L K M F P S T W Y V
To:

F
ro

m
:

Size:

0.0

0.1

0.2

0.3

0.4

0.5

Rate matrix

0.950
0.975
1.000
1.025
1.050

A R N D C Q E G H I L K M F P S T W Y V
Symbol

P
ro

b:

Size:

0.01438590

0.03846657

0.06254724

0.08662791

Equlibrium distribution

Construct a continuous deletor process:

22

> cont.del <- ContinuousDeletor(rate = 0.6, max.length = 10,

+ dist = expression(rnorm(1, mean = 5, sd = 3)))

Construct the template sequence for the cont.ins.lg insertion process:

> templ.seq.wag <- AminoAcidSequence(length = 10)

Clone the template sequence for the cont.ins.wag process:

> templ.seq.lg <- clone(templ.seq.wag)

Construct continuous insertor process object cont.ins.wag:

> cont.ins.wag <- ContinuousInsertor(rate = 0.6, max.length = 10,

+ dist = expression(rnorm(1, mean = 5, sd = 3)))

Construct continuous insertor process object cont.ins.lg:

> cont.ins.lg <- ContinuousInsertor(rate = 0.6, max.length = 10,

+ dist = expression(rnorm(1, mean = 5, sd = 3)))

Set up the template sequences for the insertion processes:

> processes.site.wag<-list(wag, cont.ins.wag, cont.del)

> processes.site.lg<-list(lg, cont.ins.lg, cont.del)

> templ.seq.wag$processes <- list(processes.site.wag)

> templ.seq.lg$processes <- list(processes.site.lg)

Now the cont.ins.lg process samples the states from the equilibrium distribution of the LG model and
cont.ins.wag samples the states from the WAG model.

Disabling write protection for the insertion processes:

> cont.ins.wag$writeProtected <- FALSE

> cont.ins.lg$writeProtected <- FALSE

Set the template sequence for the insertion processes:

> cont.ins.wag$templateSeq <- templ.seq.wag

> cont.ins.lg$templateSeq <- templ.seq.lg

Setting up the insert hook for the insertion processes:

Insert hook functions are called just before inserting the sequence generated by the insertion process.
This function allows for arbitrary modifications to be made to the inserted sequence object. In this case
the insert hook functions sample the site-process specific rate multipliers of the substitution processes
from an invariants plus discrete gamma (+I+dΓ) model:

> cont.ins.wag$insertHook <- function(seq, target.seq, event.pos,

+ insert.pos) {

+ plusInvGamma(seq, process = wag, pinv = 0.1, shape = 1)

+ return(seq)

+ }

23

> cont.ins.lg$insertHook <- function(seq, target.seq, event.pos,

+ insert.pos) {

+ plusInvGamma(seq, process = lg, pinv = 0.1, shape = 1)

+ return(seq)

+ }

Now the processes are in place, so it is time to set up the root sequence.

> aa.seq <- AminoAcidSequence(length = 60)

Now we will create a pattern of processes. The “left linker”, “core” and “right linker” regions evolve by
different sets of processes. The core region has no indel processes attached, so its length will remain
constant:

> process.pattern <- c(rep(list(list(wag, cont.del, cont.ins.wag)),

+ times = 20), rep(list(list(jtt)), times = 20), rep(list(list(lg,

+ cont.del, cont.ins.lg)), times = 20))

Apply the process pattern to the root sequence:

> aa.seq$processes <- process.pattern

Set up site specific rates by iterating over sites and sampling rates from a substitution process specific
distribution:

> for (i in 1:aa.seq$length) {

+ if (isAttached(aa.seq$sites[[i]], jtt)) {

+ setRateMultipliers(aa.seq, jtt, qnorm(runif(1,min=0.5,max=1),mean=0.001,sd=0.01), index = i)

+ }

+ else if (isAttached(aa.seq$sites[[i]], wag)) {

+ plusInvGamma(aa.seq, process = wag, pinv = 0.1, shape = 1,

+ index = i)

+ }

+ else if (isAttached(aa.seq$sites[[i]], lg)) {

+ plusInvGamma(aa.seq, process = lg, pinv = 0.1, shape = 1,

+ index = i)

+ }

+ }

Sample the states of the root sequence from the attached substitution processes:

> sampleStates(aa.seq)

> print(aa.seq)

[1] "KFEIFQIDFAIGDWKLDLLADNIGPTYRNLPVHISLATPTGNAKLIRIEIVDLRFLVNPY"

Plot the total rates of the sites:

> plot(aa.seq)

24

0
1

2
3

4
Total rate plot for sequence AminoAcidSequence:Anonymous:140448531626576

Position

To
ta

l r
at

e

1 5 9 13 18 23 28 33 38 43 48 53 58

Read in a tree using the ape package:

> tree <- read.tree(file = "smalldemotree.nwk")

Construct the simulation object and get an object summary:

> sim <- PhyloSim(phylo = tree, root.seq = aa.seq)

> summary(sim)

Name: Anonymous

Id: PhyloSim:Anonymous:140448547268368

Root Sequence big rate: 82.6018990299036

Tree length: 1.4997

Phylo object details:

Phylogenetic tree with 5 tips and 4 internal nodes.

Tip labels:

t2, t4, t3, t5, t1

Rooted; includes branch lengths.

Alignment: undefined

Log file: PhyloSim_Anonymous_140448547268368.log

Log level: -1

Plot the simulation object (tree with node labels):

25

> plot(sim)

t2

t4

t3

t5

t1

6

7

8

9

A “node hook” is a function which accepts a Sequence object through the named argument “seq” and
returns a Sequence object. After simulating the branch leading to the node, the resulting Sequence

object is passed to the node hook and the returned object is used to simulate the downstream branches.

Create a node hook function:

> node.hook <- function(seq) {

+ for (site in seq$sites) {

+ if (isAttached(site, jtt)) {

+ attachProcess(site, pam)

+ }

+ }

+ return(seq)

+ }

Attach the hook to node 8:

> attachHookToNode(sim, node = 8, fun = node.hook)

This node.hook function will attach the pam substitution process to all sites which have the jtt process
attached (the “core” region). The affected sites will evolve with a doubled rate by a combination of
substitution processes (jtt and pam) in the clade defined by the node - (t4, t2).

26

Run the simulation:

> Simulate(sim)

!!

!! WARNING: fast & careless mode is on, most of the error checking is omitted! !!

!! Please note that this also disables the saving of branch statistics. !!

!! You can go back to normal mode by deleting the PSIM_FAST object. !!

!!

Simulating edge 1 of 8

Simulating edge 2 of 8

Simulating edge 3 of 8

Simulating edge 4 of 8

Simulating edge 5 of 8

Simulating edge 6 of 8

Simulating edge 7 of 8

Simulating edge 8 of 8

Save the resulting alignment, omitting the internal nodes:

> saveAlignment(sim, file = "example_V3.1_aln.fas", skip.internal = TRUE)

Plot the resulting alignment alongside the tree (including sequences at internal nodes):

> plot(sim,num.pages=1)

K F E I F Q I D F A I G D W K L D L L A D N I G P T Y R N L P V H I S L A T P T G N A K L I R I E I V D L R F L V N P Y

F G V L L W A N P V K L A D N I G P T Y R N L P V H I S L A T P T V L M T N H R L I R I E S S L S T G Q S H E V P A D L T D L K E P R E Y L S K L Q L

K F E P Y H E T P G I F G E H F F T G T G L I F Q I D F P D N I G P T Y R N L P V H I S L A T P T G S A K L I R I E L V D L R F

A L N D N I G P T Y R N L P V H I S L A T P T G S A K I C R I E F V D L R F

A L N D N I G P T Y R N L P V H I S L A T P T G S A K I C R I E F V D L R F

A L N D N I G P T Y R N L P V H I S L A T P T G S A K E F V D L R F

K F E P Y H L P F T S N T L Q I D F P D N I G P T Y R N L P V H I S L A T P T D Q A K L V R R V D L K F

K F K P Y H L P Y V F K H A H F F T T G T G S D T A I Y L G L G L Q I D F P D E I G P N Y R G L P A Q I S L A T P T D Q D L K F

K F E P Y H L P F T S N T L Q Y E L L F A A C S I D F P D N I G P T C K E L P V H I S L A T P A D Q A K L V R F E Q A L Y R V D L L P L M Q A E F M N F

Root node 6

t1

Node 7

Node 9

t5

t3

Node 8

t4

t2

0 50 100 150

Root node 6

t1

Node 7

Node 9

t5

t3

Node 8

t4

t2

0.0 0.1 0.2 0.3 0.4 0.5

Disable fast mode:

> rm(PSIM_FAST)

3.2 Evolving codon sequences

Enable “fast & careless” mode:

> PSIM_FAST <- TRUE

Construct a GY94 codon substitution model:

27

> p <- GY94()

Set the transition/transversion rate ratio:

> p$kappa = 2

Sample codon frequencies from a normal distribution:

> codon.freqs <- abs(rnorm(61, mean = 10, sd = 3))

> codon.freqs <- codon.freqs/sum(codon.freqs)

> p$equDist <- codon.freqs

Get object summary for p:

> summary(p)

Name: Anonymous

Id: GY94:Anonymous:140448552968960

Kappa: 2

Genetic code table id: 1

Alphabet:

Type: Standard

Symbols: TTT TTC TTA TTG TCT TCC TCA TCG TAT TAC TGT TGC TGG CTT CTC CTA CTG CCT CCC CCA CCG CAT CAC CAA CAG CGT CGC CGA CGG ATT ATC ATA ATG ACT ACC ACA ACG AAT AAC AAA AAG AGT AGC AGA AGG GTT GTC GTA GTG GCT GCC GCA GCG GAT GAC GAA GAG GGT GGC GGA GGG

Unscaled rate matrix: not shown

Equilibrium distribution:

TTT TTC TTA TTG TCT TCC TCA

Prob: 0.01672617 0.01456614 0.01709449 0.01614707 0.01500108 0.02074306 0.01527754

TCG TAT TAC TGT TGC TGG CTT

Prob: 0.018215 0.01065092 0.01065321 0.007469893 0.0054473 0.01521744 0.01554039

CTC CTA CTG CCT CCC CCA CCG

Prob: 0.02324082 0.01379908 0.01574337 0.01706141 0.02194219 0.02046957 0.02294256

CAT CAC CAA CAG CGT CGC CGA

Prob: 0.01824458 0.01659247 0.01818816 0.01634026 0.02267133 0.0201751 0.01802197

CGG ATT ATC ATA ATG ACT ACC

Prob: 0.01680269 0.01565148 0.01381539 0.01706458 0.01611814 0.007830715 0.02018416

ACA ACG AAT AAC AAA AAG AGT

Prob: 0.01584894 0.01729853 0.01553198 0.01835465 0.0184116 0.01315049 0.01398526

AGC AGA AGG GTT GTC GTA GTG

Prob: 0.01899302 0.01264604 0.01985988 0.02178153 0.01012174 0.01286262 0.01804858

GCT GCC GCA GCG GAT GAC GAA

Prob: 0.008641214 0.01773633 0.02357109 0.02795889 0.01430399 0.02257264 0.01668647

GAG GGT GGC GGA GGG

Prob: 0.02590097 0.009065293 0.01305578 0.006472787 0.01548999

Site specific parameters (2):

Id: rate.multiplier

Name: Rate multiplier

Type: numeric

Default value: 1

Id: omega

Name: Omega

Type: numeric

Default value: 1

28

Get a bubble plot of p:

> plot(p,scale=0.5)

GGGGGAGGCGGTGAGGAAGACGATGCGGCAGCCGCTGTGGTAGTCGTTAGGAGAAGCAGTAAGAAAAACAATACGACAACCACTATGATAATCATTCGGCGACGCCGTCAGCAACACCATCCGCCACCCCCTCTGCTACTCCTTTGGTGCTGTTACTATTCGTCATCCTCTTTGTTATTCTTT

TTTTTCTTATTGTCTTCCTCATCGTATTACTGTTGCTGGCTTCTCCTACTGCCTCCCCCACCGCATCACCAACAGCGTCGCCGACGGATTATCATAATGACTACCACAACGAATAACAAAAAGAGTAGCAGAAGGGTTGTCGTAGTGGCTGCCGCAGCGGATGACGAAGAGGGTGGCGGAGGG
To:

F
ro

m
:

Size:

0.00

0.05

0.10

0.15

Rate matrix

0.950
0.975
1.000
1.025
1.050

TTTTTCTTATTGTCTTCCTCATCGTATTACTGTTGCTGGCTTCTCCTACTGCCTCCCCCACCGCATCACCAACAGCGTCGCCGACGGATTATCATAATGACTACCACAACGAATAACAAAAAGAGTAGCAGAAGGGTTGTCGTAGTGGCTGCCGCAGCGGATGACGAAGAGGGTGGCGGAGGG
Symbol

P
ro

b:

Size:

0.00544730

0.01295116

0.02045502

0.02795889

Equlibrium distribution

Construct a discrete deletor process:

> d<-DiscreteDeletor(

+ rate=1,

+ sizes=1:4,

+ probs=c(4,3,2,1)/10

+);

Construct a discrete insertor process inserting neutrally evolving sites:

> i<-DiscreteInsertor(

+ rate=1.5,

+ sizes=1:4,

+ probs=c(4,3,2,1)/10,

+ template.seq=CodonSequence(length=4,processes=list(list(p)))

+);

Construct root sequence and attach process p:

> s<-CodonSequence(length=30,processes=list(list(p)))

29

Sample omegas from a discrete model:

> omegaVarM3(s,p,omegas=c(0,0.5,1),probs=c(2/4,1/4,1/4))

Plot the omega values across sites:

> plotParametersAtSites(s,p,"omega");

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Plot of parameter omega for process GY94:Anonymous:140448552968960

Position

V
al

ue

1 3 5 7 9 11 14 17 20 23 26 29

Sample states:

> sampleStates(s)

Construct the simulation object:

> sim <- PhyloSim(root.seq = s, phylo = read.tree("smalldemotree.nwk"))

Create a node hook function and attach to node 8:

> node.hook <- function(seq) {

+ setOmegas(seq, p, 1)

+ attachProcess(seq, d)

+ attachProcess(seq, i)

+ return(seq)

30

+ }

> attachHookToNode(sim, node = 8, fun = node.hook)

The node.hook function sets all omegas to 1 and attaches the insertion process i and deletion process
d. Hence the sequences will evolve neutrally with indels in the clade defined by node 8 - (t4, t2).

Disable fast mode just before simulation in order to preserve branch statistics:

> rm(PSIM_FAST)

Run the simulation:

> Simulate(sim)

Simulating edge 1 of 8

Simulating edge 2 of 8

Simulating edge 3 of 8

Simulating edge 4 of 8

Simulating edge 5 of 8

Simulating edge 6 of 8

Simulating edge 7 of 8

Simulating edge 8 of 8

Plot the resulting alignment alongside the tree:

> plot(sim,num.pages=1)

−−− ATT GTT CCG CTA CAC −−− −−− TAT −−− CTC ACG −−− −−− −−− −−− −−− GCT TCT −−− ATA CAT GTA TAC TTA −−− −−− −−− −−− TCT −−− ACA GGC ACT GCA ACC ACG GCA GAG CGT CAG AAG CGA TCA CAC

−−− ATC GTT CCA CGA CAC −−− −−− TAT −−− CTC ACG −−− −−− −−− −−− −−− ACT TCG −−− ATA CAT GTA TAC TTA −−− −−− −−− −−− TCT −−− ACA GGC ACT GCA ACC GCG GCA GAG CGT CTG AAG CAT TCA CAC

−−− ATT GTT CCG CTA AAC −−− −−− TAT −−− CTC ACG −−− −−− −−− −−− −−− GCT TCT −−− ATA CAT GTA TAC TTA −−− −−− −−− −−− TCT −−− ACA GGC ACT GCA ACC ACC GCA GAG CGT CAG AAG CGA TCA CAC

−−− ATT GTT CCA CTA AAC −−− −−− TAT −−− CTC ACG −−− −−− −−− −−− −−− GCT TCT −−− ATA CAT GTA TAC CTA −−− −−− −−− −−− TCT −−− ACA GGC ACT GCA ACC ACC GCA GAG CGT CAG AAG CGA TCA CAC

−−− ATT GTT CCA CTA AAC −−− −−− TAT −−− CTC ACG −−− −−− −−− −−− −−− GCT TCT −−− ATA CAT GTA TAC CTA −−− −−− −−− −−− TCT −−− ACA GGC ACT GCA ACC ACC GCA GAG CGT CAG AAG CGA TCA CAC

−−− ATT GTT CCA CTA AAC −−− −−− TAT −−− CTC ACG −−− −−− −−− −−− −−− GCT TCT −−− ATA CAT GTA TAC CTA −−− −−− −−− −−− TCT −−− ACA GGC ACT GCA ACC ACC GCA GAG CGT CAG AAG CGA TCA CAC

−−− ATT GTT CCG CTA AAC −−− −−− TAT −−− CTC ACG −−− −−− −−− −−− −−− GCT ACA −−− ATA CGT GTA TAC TTA −−− −−− −−− −−− TCT −−− ACA GGC ACT GCA ACC ACC GCA GAG CGT CAG AAG CGA TCA CAC

−−− −−− GTT CCG CTA AAC GAC GAG TAC −−− CTC ACA TTA TGG −−− −−− −−− GCT ACA −−− ATA CGT GCA TAC −−− −−− −−− −−− −−− TCT −−− ACA GGC ACT GCA ACC ACC GCA GAG CAT CAG AAC CGA TCA CAC

TCA −−− −−− −−− CTA AAC −−− −−− TAT GAG CTC ACG −−− −−− TTC AGA AGA GCT ACA CAG ATA CGT GTA TAC CTA AAG AGC GGC ACG TCT GAG ACA GGC ACT GCA ATC ACC GCA GAG CGT CAG AAG CGA TCA CAC

Root node 6

t1

Node 7

Node 9

t5

t3

Node 8

t4

t2

0 10 20 30 40

Root node 6

t1

Node 7

Node 9

t5

t3

Node 8

t4

t2

0.0 0.1 0.2 0.3 0.4 0.5

Export the nonsynonymous substitution counts as a phylo object:

> nsyn.subst<-exportStatTree(sim,"nr.nsyn.subst")

Plot the exported phylo object:

> plot(nsyn.subst)

> nodelabels()

31

t2

t4

t3

t5

t1

6

7

8

9

Save the resulting alignment:

> saveAlignment(sim, file = "example_V3.2_aln.fas",)

3.3 Implementing a new process

The following code demonstrates how to implement a process which performs inverted duplications. In
this example we simply replace the function object stored in the generateBy virtual field of a Gen-

eralInsertor object. Alternatively, we could have defined a new class and set the insert generating
function in the constructor method.

Enable fast & careless mode:

> PSIM_FAST<-TRUE;

Construct a DiscreteInsertor process:

> ivd<-DiscreteInsertor(rate=0.06,sizes=c(4,6),probs=c(2/3,1/3));

Set template sequence just to make the process object happy:

> ivd$templateSeq<-NucleotideSequence(length=1);

32

Replace the function object stored in the generateBy virtual field. See the documentation of the Gen-

eralInsertor class:

> ivd$generateBy<-function(process=NA,length=NA,target.seq=NA,event.pos=NA,insert.pos=NA){

+ # get the target sequence length

+ target.length<-target.seq$length;

+ # construct a vector with the positions to copy:

+ positions<-(insert.pos+1):(insert.pos + length)

+ # discard illegal positions:

+ positions<-positions[positions > 0 & positions <= target.length];

+ # copy subsequence

+ insert<-copySubSequence(target.seq,positions,process);

+ # reverse complement sequence,

+ # take care, the class of this objects is "Sequence":

+ revComp.NucleotideSequence(insert);

+ # do not allow nested insertions:

+ setRateMultipliers(insert,ivd,0);

+ # return insert

+ return(insert);

+ }

Now we have a process which performs inverted duplications.

Construct a JC69 process object:

> p<-JC69();

Construct root sequence object:

> s<-NucleotideSequence(length=50)

Attach processes via virtual field:

> s$processes<-list(list(p,ivd))

Sample states from the equilibrium distribution of the attached processes:

> sampleStates(s)

Detach the substitution process:

> detachProcess(s,p)

Create among-sites rate variation for the inverted duplication process by sampling rate multipliers from
an I+G model:

> plusInvGamma(s,ivd,pinv=0.7,shape=0.5)

Construct simulation object:

> sim<-PhyloSim(root.seq=s, phylo=read.tree("smalldemotree.nwk"));

Run simulation:

33

> Simulate(sim)

!!

!! WARNING: fast & careless mode is on, most of the error checking is omitted! !!

!! Please note that this also disables the saving of branch statistics. !!

!! You can go back to normal mode by deleting the PSIM_FAST object. !!

!!

Simulating edge 1 of 8

Simulating edge 2 of 8

Simulating edge 3 of 8

Simulating edge 4 of 8

Simulating edge 5 of 8

Simulating edge 6 of 8

Simulating edge 7 of 8

Simulating edge 8 of 8

Plot tree and alignment:

> plot(sim,num.pages=1)

C C A C T T T G T A T G T T T C A G C T G T A A C T G G A T A A C A G A A T T G G T T T A C T A A T

C C A C T T T G T A T G T T T C A G C T G T A A C T G G A T A A C A G A A T T G G T T T A C T A A T

C C A C T T T G T A T G T T T C A G C T G T A A C T G G A T A A C A G A A T T G G T T T A C T A A T

C C A C T T T G T A T G T T T C A G C T G T A A C T G G A T A A C A G A A T T G G T T T A C T A A T

C C A C T T T G T A T G T T T C A G C T G T A A C T G G A T A A C A G A A T T G G T T T A C T A A T

C C A C T T T G T A T G T T T C A G C T G T A A C T G G A T A A C A G A A T T G G T T T A C T A A T

C C A C T T T G T A T G T T T C A G C T G T A A C T G G A T A A C A G A A T T G G T T T A C T A A T

C C A C T T T G T A T G T T T C A G C T G T A A C T G G A T A A C A G A A T T G G T T T A C T A A T

C C A C T T T G T A T G T T T C A G C T G T A A C T G G A T A A C A G A A T T G G T T T A C T A A T

Root node 6

t1

Node 7

Node 9

t5

t3

Node 8

t4

t2

0 10 20 30 40 50

Root node 6

t1

Node 7

Node 9

t5

t3

Node 8

t4

t2

0.0 0.1 0.2 0.3 0.4 0.5

Save alignment:

> saveAlignment(sim,file="example_V3.3.fas");

Disable fast & careless mode:

> rm(PSIM_FAST);

3.4 Evolving a genomic region containing a “gene”

The following code demonstrates how to simulate a genomic region containing a gene with introns and
noncoding regions.

We will simulate the following features:

• NC1 (length: 1000 nucleotide sites) - noncoding region 1, evolving under a GTR substitution model
with deletions and insertions (of Cs only).

• E1 (length: 400 codon sites) - exon 1, evolving under a nucleotide-scaled GY94 codon model with
small indels.

34

• I1-5 (length: 200 nucleotide sites) - introns 1-5, evoling under a F84 substitution model with indels

• E2-5 (length: 200 codon sites) - exons 2-5, evolving under a nucleotide-scaled GY94 codon model.

• E6 (length: 400 codon sites) - exon 6, evolving under a nucleotide-scaled GY94 codon model with
small indels.

• NC2 (length: 1400 nucleotide sites) - noncoding region 2, evolving under a K80 substitution model.

• Invariable start codon and splice sites.

• A special substitution process for stop codons.

The total length of the Sequence object is 5000. We will also simulate heterogeneity of nucleotide
substitution rates, indel rates and omega ratios.

Enable fast & careless mode:

> PSIM_FAST<-TRUE;

Create a list holding partition information and set partition properties:

> part<-list();

Partition NC1:

> part$nc1<-list(

+ "type"="noncoding",

+ "len"=1000,

+ "subst"=NA,

+ "ins"=NA,

+ "del"=NA,

+ "gamma.shape"=0.5

+);

> part$nc1$subst<-GTR(

+ rate.params=list(

+ "a"=1, "b"=2, "c"=3,

+ "d"=1, "e"=2, "f"=3

+),

+ base.freqs=c(1.5,1,1.5,1)/5

+)

> part$nc1$ins<-DiscreteInsertor(

+ rate=0.025,sizes=1:6,

+ probs=6:1/21,

+ template.seq=NucleotideSequence(string="CCCCCC")

+);

> part$nc1$del<-DiscreteDeletor(

+ rate=0.025,

+ sizes=1:6,

+ probs=6:1/21

+);

Partition E1:

> part$e1<-list(

+ "type"="first.exon",

35

+ "len"=400,

+ "subst"=NA,

+ "ins"=NA,

+ "del"=NA,

+ "omegas"=c(0,1,1.1),

+ "omega.probs"=c(4,2,1)/5

+);

Construct a “nucleotide-scaled” codon model which can be used in mixed sequences:

> part$e1$subst<-GY94(kappa=2,scale.nuc=TRUE);

> part$e1$ins<-DiscreteInsertor(

+ rate=0.025,

+ sizes=1:2,

+ probs=c(2/3,1/3),

+ template.seq=CodonSequence(length=2,processes=list(list(part$e1$subst)))

+);

> part$e1$del<-DiscreteDeletor(

+ rate=0.025,

+ sizes=1:2,

+ probs=c(2/3,1/3)

+);

> f84<-F84();

> f84$kappa<-1.8;

> gy94.e2_5<-clone(part$e1$subst);

> gy94.e2_5$kappa<-1.5

Partitions E2-5 and I1-4:

> del.introns<-DiscreteDeletor(

+ rate=0.025,

+ sizes=1:8,

+ probs=8:1/36

+);

> ins.introns<-DiscreteInsertor(

+ rate=0.025,

+ sizes=1:8,

+ probs=8:1/36,

+ template.seq=NucleotideSequence(length=8,processes=list(list(f84)))

+);

> for(i in 1:4){

+ part[[paste("i",i,sep="")]]<-list(

+ "type"="intron",

+ "len"=200,

+ "subst"=f84,

+ "ins"=ins.introns,

+ "del"=del.introns,

+ "gamma.shape"=abs(rnorm(1,mean=1,sd=0.2))

+)

+ part[[paste("e",i+1,sep="")]]<-list(

+ "type"="exon",

+ "len"=200,

+ "subst"=gy94.e2_5,

+ "ins"=NA,

+ "del"=NA,

36

+ "omegas"=c(0,0.5),

+ "omega.probs"=c(3/4,1/4)

+)

+

+ }

Partition I5:

> part$i5<-list(

+ "type"="intron",

+ "len"=200,

+ "subst"=f84,

+ "ins"=ins.introns,

+ "del"=del.introns,

+ "gamma.shape"=abs(rnorm(1,mean=1,sd=0.1))

+)

> rm(f84,gy94.e2_5,del.introns,ins.introns);

Partition E6:

> part$e6<-list(

+ "type"="last.exon",

+ "len"=400,

+ "subst"=NA,

+ "ins"=NA,

+ "del"=NA,

+ "omegas"=c(0,1,1.1),

+ "omega.probs"=c(4,2,1)/5

+);

> tmp<-clone(part$e1$subst);

> tmp$kappa<-0.5;

> part$e6$subst<-tmp;

> part$e6$del<-DiscreteDeletor(

+ rate=0.025,

+ sizes=1:4,

+ probs=c(4,3,2,1)/10

+);

> part$e6$ins<-DiscreteInsertor(

+ rate=0.025,

+ sizes=1:2,

+ probs=c(1/3,2/3),

+ template.seq=CodonSequence(length=2,processes=list(list(part$e6$subst)))

+);

Partition NC2:

> part$nc2<-list(

+ "type"="noncoding",

+ "len"=1400,

+ "subst"=K80(rate.params=list(Alpha = 2, Beta = 1)),

+ "ins"=NA,

+ "del"=NA,

+ "gamma.shape"=0.5

+);

37

Construct root sequence object:

> s<-Sequence(length=5000);

Construct Alphabet objects:

> nuc<-NucleotideAlphabet();

> cod<-CodonAlphabet();

Construct an Alphabet object containing the stop codons:

> stop.alphabet<-Alphabet(symbols=c("TAG","TAA","TGA"));

Construct a substitution process acting on stop codons only:

> stop.subst<-GeneralSubstitution(

+ alphabet=stop.alphabet,

+ rate.list=list(

+ "TAG->TAA"=1,

+ "TAG->TGA"=2,

+ "TAA->TAG"=3,

+ "TAA->TGA"=1,

+ "TGA->TAG"=2,

+ "TGA->TAA"=3

+)

+);

Get a bubble plot of stop.subst:

> plot(stop.subst,scale=0.5);

38

TGA

TAA

TAG

TAG TAA TGA
To:

F
ro

m
:

Size:

0.0

0.2

0.4

0.6

Rate matrix

0.950

0.975

1.000

1.025

1.050

TAG TAA TGA
Symbol

P
ro

b:

Size:

0.2432432

0.3153153

0.3873874

0.4594595

Equlibrium distribution

Iterate over partitions, set up processes and rate multipliers, fix start codon and splice sites, attach the
stop.subst process to stop codon:

> pos<-0;

> for(i in part){

+ beg<-pos+1;

+ end<-pos+i$len;

+ range<-beg:end;

+

+

+ if((i$type=="noncoding") | (i$type=="intron")){

+ setAlphabets(s,list(nuc),range);

+ }

+ else {

+ setAlphabets(s,list(cod),range);

+ }

+

+ if(!is.na(i$del)){

+ attachProcess(s,i$del,range);

+ }

+ if(!is.na(i$ins)){

+ attachProcess(s,i$ins,range);

+ }

+

+ if((i$type=="noncoding") | (i$type=="intron")){

39

+ attachProcess(s,i$subst,range);

+

+ plusInvGamma(this=s,process=i$subst,pinv=0.6,shape=i$gamma.shape,range);

+ if(i$type=="intron"){

+ # fix splicing sites

+ setStates(s,c("G","T","A","G"),c(beg,beg+1,end-1,end));

+ setRateMultipliers(s,i$subst,0,c(beg,beg+1,end-1,end));

+ setInsertionTolerance(s,i$ins,0,c(beg,beg+1,end-1,end));

+ setDeletionTolerance(s,i$del,0,c(beg,beg+1,end-1,end));

+ }

+ }

+ else if(i$type=="exon"){

+ attachProcess(s,i$subst,range);

+

+ omegaVarM3.CodonSequence(s,i$subst,i$omegas,i$omega.probs,range);

+ }

+ if(i$type=="first.exon"){

+ attachProcess(s,i$subst,range);

+ # Fix start codon:

+ setStates(s,"ATG",beg);

+ setRateMultipliers(s,i$subst,0,beg)

+ setInsertionTolerance(s,i$ins,0,beg);

+ setDeletionTolerance(s,i$del,0,beg);

+ }

+ if(i$type=="last.exon"){

+ attachProcess(s,i$subst,range);

+ # Detach GY94 from last site:

+ detachProcess(s,i$subst,end);

+ # Replace alphabet:

+ setAlphabets(s,list(stop.alphabet),end);

+ # Attach stop codon process:

+ attachProcess(s,stop.subst,end);

+ # Sample stop codon:

+ sampleStates(s,end);

+ # Protect against indels:

+ setInsertionTolerance(s,i$ins,0,end);

+ setDeletionTolerance(s,i$del,0,end);

+ }

+

+ pos<-end;

+ }

Sample remaining site states:

> sampleStates(s);

Generate a random coalescent tree with 3 leaves and construct simulation object:

> sim<-PhyloSim(root.seq=s, phylo=rcoal(3));

Scale tree length to 0.15:

> scaleTree(sim,0.15/sim$treeLength);

Run simulation:

40

> Simulate(sim)

!!

!! WARNING: fast & careless mode is on, most of the error checking is omitted! !!

!! Please note that this also disables the saving of branch statistics. !!

!! You can go back to normal mode by deleting the PSIM_FAST object. !!

!!

Simulating edge 1 of 4

Simulating edge 2 of 4

Simulating edge 3 of 4

Simulating edge 4 of 4

Plot tree and alignment, omitting ancestral sequences:

> plot(sim,num.pages="auto",plot.ancestors=FALSE)

T A T A T A A C G C A C A A T T A A A A A A G A A G A T A G G G A C A T G T T A G C C G C A C C A A A A G G C G T G C T C C C A T T T G C C G T G G A A A C T G T A T A C A A C T T A A G T T T T A A A C A G T A C T C A G C A G G T

T A T A T A A C G C A C A A T T A A A A A A G A A G A T A G G G A C G T G T T A G C C G C A C C A T A A G G C G G G C T C C C A T T T G C C G G G G A A A C T G A G G C T T A T A C A A C T T A A G T T T T A A A C A G T A C T C A G C A G G T

T A T A T A A C G C A C A A T T A A A A A A G A A G A T A G G G A C G T G T T A G C C G C A C C A T A A G G C G G G C T C C C A T T T G C C G G G G A A A C T G A G G C A T A T A C A A C T T A A G T T T T A A A C A G T A C T C A G C A G G T

T C C T A A T T C G A C T G C G T T T A T T G T A T C A C A T A A T T A G G T A G C C A T G G T T T G T C T C T A G T T T T T C A G A T G A A A G A G A A G G A T G T C G G T T G A C A G G C G T G A C T C T T A G G A A C G G G A G G A

T C C T A A T T C G A C T T C G T T T A T T G T A T C A C A T A T T T A G G T A G C C A T G G T T T G T C T C T A G T T G T T C A G A T G A A A G A G A A G G A T G T C G G T C G A C A G G C G T G A C T C T T A G G A A C G C C C T G A G G A

T C C T A A T T C G A C T T C G T T T A T T G T G T C A C A T A T T T A G G T A G C C A T G G T T T G T C T C T A G T T G T T C A G A T G A A A G A G A A G G A T G T C G G T C G A C A G G C G T G A C T C T T A G G A A C G C C C T G A G G A

T C A A C T C C T A T A C C T A C C T C T G T G A G T T C T A G A C C A A G T T A G A G T A T T A A T T C C T A C C G G T A C T A C A A T A C T T T G T A A C G C T T G C A A T T T C C A C T T T A A T G T A A A A C A A A T G A A G G C C G A

T C A A C T C C T A C A C C T A C C T C T G T G A G T T C T A G C C C A A G T T A G A G T G T A A A T T C C T A C C G G T A C T A C G A T G C T T T G T T A C G C T A G C A A T T T C C A C A T T A A T G T A T A A C A A A T G A A G G C C G A

T C A A C T C C T A C A C C T A C C T C T G T G A G T T C T A G C C C A A G T T A G A G T G T A A A T T C C T A C C G G T A C T A C G A T G C T T T G T G A C G C T A G C A A T T T C C A C A T T A A T G T A T A A C A A A T G A A G G C C G A

A T C A T C A G C A T T C T G T A T A A A A T T T C T G T A C T T A A T T G G T C A T T A T G T G A A C T C G G T C C T T G A A C A C T G G C G A T A T G A G T G A T T T G A T T T A A T T C T A A T A A A A G A T T G C A G A A T T G G A A C

A T C T T C A G C A T T C T G T A T A A A A T T T C T G T A C T T A A T T G G T C A T T A T G T G A A C T C G G T C C T T A A A C A C T T G C G C T G T G A G T G A T T T G A T T T A A T T C T A A T A A A A G A T T T C A G A A T T G G A A C

A T C T T C A G C A T T C T G T A T A A A A T T T C T G T A C T T G A T T G G T C A T T A T G T G A A C T C G G T C C T T A A A C A C T T G C G C T G T G A G T G A T T T G A T T T A A T T C T A A T A A A A G A T T T C A G A A T T G G A A C

G C A A A G A A C G T C T T A G T G T A T G C A A A C A T A A G A T T G A T A G A G T G A C C C C A C A A G C G A A T C G T C A T G C C G T G C A C A T C T G T A A T T T G C C C A C T T T G A T G T T C C A C G T G T T A A A T C A A T C G C

G C A A T G A A C G G C T T A G T G T A T G C A A A C A T A A G A T T G A T A G A G T G A C C C C A C A A G C G A A T C G T C A G G C C G T G C A C T T C T G T A A T T T G C C C A C T T T G A T G T T C G A C A T G T T A A A T C A A T C T C

G C A A T G A A C G G C T T A G T G T A T G C A A A C A T A A G A T T G A T A G A G T G A C C C C A C A A G C G A A T C G T C A T G C C G T G C A C T T C T G T A A T T T G C C C A C T T T G A T G T T C T A C A T G T T A A A T C G A T C T C

G G A C A A A C A C A C A C A C A T C T A A T A A A C G T A G C G T T C A A G A A A A A T G T T A A T C A A A C T T A T C T C A G G T C G G T A A A T C A T A T A C G G A G A C A T A T A T T C G G T T A A T A T A G T G C A G G C A G T

G G A C A A C C C A C A C A C A C A A A T C T A A T A A A C G T A G C G T T C A A C A A A A A T G T T A A T C A A A C T T A T C T C A A G T C G G T A A A T C A T A T A C G G A G A C A T A T A T T C G G T T T A T A T A G T G C A G G C A G T

G G A C A A C C C A C A C A C A C A A A T C T A A T A A A C G T A G C G T T C A A C A A A A A T G T T A A T C A A A C T T A T C T C A A G T C G G T A A A T C A T A T A C G G A G A C A T A T A T T C G G T T T A T A T A G T G C A G G C A G T

G A C C C G G A A G T C C A A A T T A T G C T G T A A T C G G G C A G C A T G T T C A G T G T T A A G A A A G G G A C T C G T C T G T C T C A T A G A A C C T A T T A A A T A A T A G A A A G A A T G G C G G G A A T C A C T G T C T A C

G A C C C G G A A G T C C A T A T T A T G C T G T A A C T C G G G C A G C A T G T T C A G A T T G T T A A G A A A T G G A C T C T T C T G T C T C A T A G A A C C T A T T A A A T G A T A G A A A G A A T T G C G G G A A T C A C T G T C T A C

G A C C C G G A A G T C C A T A T T A T G C T G T A A T C G G G C A G C A T G T T C A G A T T G T T A A G A A A T G G A C T C T T C T G T C T C A T A G A A C C T G T T A A A T G A T A G A A A G A A T G G C G G G A A T C A C T G T C T A C

T A G A T A G T A A A C A C C C G T A A G A A T C T A G C A A A A T C C C C G C A G G A G C G T G T A C T T T G T G A C A T A G C T T A T G T T T T A A G T A A C C G T A G A G T G C C A C G G C T C G A T A T T A C T T T C G A C T C A T G A

T A G A T A G A A A A C A C C C G T A A G A A T C T A G C A A A A T C C C C G C A G G A G C G T A T A C T T T G T G A C A T A G C T T A T G T T T T A A G G A A C C G T A T A G T G C C A C G G C T C G A T A T T A C T T T C G G C T C A T G A

T A G A T A G A A A A C A C C C G T A A G A A T C T A G C A A A A T C C C C G C A G G A G C G T A T A C T T T G T G A C A T A G C T T A T G T T T T A A G G A A C C G T A G A G T G C C A C G G C T C G A T A T T A C T T T C G G C T C A T G A

A G T C A C A A G T C T C C T T C A G C A T A G G G T A A G G A C C A T C C T T T A A T C A G ATG CGG GTG AGG GGC CTG GTA AAC ATG CGA ACC CAC GAT CCT TTC GAT CTA CCT GGG TGT ACA AGC AAC CTT TCC AAG CTA TGG ACC GGG ATA CGA TCG CTA CGC CTT ACT AAG CAC AGA ACG GTG GCC ATC ACC AGC AGC ATG TAC GCC AGT GGT CAG GTC CCC CCC ATA CCC CGG CAG CTC GAA ATC CGA GAC TCC CAC GAA TTC CTT GCT GGA AAT

A G T C A C A A G T C T C A T T C A G C A T A G G G T A A G G A C C A T C C T T T A T T C A G ATG CGG GTG GGG GGC CTG GTA AAC AAG CGA ACC CAC GAT ACT TAC GAT CGA CCT CGG TGT ACT AAC AAC CTT TCC AAT CTA TGT ACC CGG ATA CGA TCG CTA CGT TTT GCT AAG TAC ATT AAG CTG TCT TTC ACC AGC AGC ATG TAC GCC −−− −−− CAG GTC TCC CCC ATA CCC CGG CAG CTT GAA ATC CAA GAC TCC CAC GAA TTA CTT ACT GGA TAT

A G T C A C A A G T C T C A T T C A G C A T A G G G T A A G G A C C A T C C T T T A T T C A G ATG CGG GTG GGG GGC CTG GTA AAT AAG CGA ACC CAC GAT ACT TAC GAT CGA CCT CGG TGT GCT AAC AAC CTT TCC ATT CTA TGT ACC CGG ATA CCA TCG CTA CGT TTT GCT AAG TAC CTT AAG CTG TCT ATC ACC AGC AGG ATG TAC GCC −−− −−− CAG GTC CCC CCC ATA CCC CGG CAG CTC GAA ATC CAA GAC TCC CAC GAA TTA CTT ACT GGA TAT

TGG AAT AAC AAG AAC GCT TGG GGT GAC AGG TTT AGT CGA CGG ATT TAC GGC ACG GCT TCA CAT ATG ACG CAG GCC CAT TTA CGA GGC ACC CTG CTT TTA AGC TTG CCA AAC AAC AAG TTG TCT ATT CTT AGG ACC TTA ATA GCG CCT GAA AAC AGT GCC AAG GCC ACT CGT CAT TGC AGG ATA TGG GAG ACC CGA GTT TTA CCC GAC GTT CAA TGC ATC AGT GAT ACC GTT TGC CCC CCG CGG AAA CAT ATG GTC CCG CGT GCC TTG TCC GGC GGC GTC GAC ACC CAT GTA GGG CTG ACC CAA GGC AGG CTA AGC TCA GCA ATT GGC ACA TCG AAT GGG AAC TCA TCC −−− −−− TCT TCA

TGG AAT GAC AAG AAC ATT TGG GGT GAC AGG TAT AGT CGA CGG ATT CAC GGC ACG GCT CCG CAT ATG ACG CAG GTC TAT TTA CTA GGT ACG CTG CTC TTG AGC TTG CCA GGC AAC AAG ATG TCT AGT CTT AGG ACC CTA ATA CGG TCT GAA AAG AGT GCC AAG GCC ACT CGT CGT TGC AGG ATA TGG GAA AAC CGA GTT TTA CCC GAC GTT CAA TAC GCC AGT GAT ACC GTA TGC CCC CCG CGG GGA CAT ATG GTA CCG CAT GTC TCG TAC GGC GGC GTC GAC ACC CAT CTA GGG CTT ACT CAA GGG AGG CTA AGC TCA GCA CTT GGC CCA AGG AAT AGG GAC TCA TCC GCA ATG TCT TCA

TGG AAT GAC AAG AAT TTT TGG GGT GAC AGG TAT AGT CGA CGG ATT CAC GGC ACA GCT CCG CAT ATG ACG CAG GTC TAT TTA CTA GGT ACG CTG CTC TTG AGC TTG CCA GGC AAC AAG TTG TCT AGT CTT AAG ACC CTA ATA CGG TCT GTA AGG AGC TCC AAG GCA ACT CGT CGT TGC AGG ATA TGG GAA AAC CGA GTT TTA CCC GAC GTT CGG TGC ACC AGT GAT AAC GTA TGC CCC CCG CGG GGA CAT ATG GTA CCG CAT GTC TCG TAC GGC GGC GTC GAC ACC CAT CTA GGG CTT ACT CAA GGG AGG CTA AGC TCA GCA ATT CGC CCA TGG AAT AGG GGC TCA TCC GCA ATT TCT TCA

TTA CCA GCC TTT CTC TTG GGA GAG TCG TGC ACG CAC TAC AAT GGC TCC GAC AGT CTT GGT CGC GCA ACC GCG TCT CCA TCG TTT CTC TAT AAC ATT GAA CGC GAT GTC CAA TGC ACA ATT TCT ACG CAT GAC TCC GGC ATC ACC ATT TTT TGG CGC AGA TTT CCA CGC CGT GAG ATT ACA CAT CGT TCA AAG AAT TTA GCG AAA ACT ACG AGT AAA CGA GAT AGG ACT AGC ACA AAT GCA ATT TAT GGC CCC ATT ACT TTC ATC GCC GGT GCT GTG CTT TGG ACG TGG GGG ACC GGC CAA CAA TTT CAG GTG ATT AAG AGC GAA TTG CTA GAA AGG TGC GTA CAG GTG CCT GTC CAA ATT

TTA CCA GCC TTT CAT ATG GGA GAG TCG TGC ACG CAC TAC AGT GGC TCG GAA AGT CTT AGG CGT GCA GCC GCA TGT CCA CCG TTT CTC TAT AAC AAT GAA CAT GAT GTA CGA TGC ACA ATT TCT ACG CAA GTC TCC GGC ATC ACC ATT TTT TTG CGC AGA TTT GCA CGC CAT GAG ATT ACA CAT CGT TCA AAC AAT TTA CTG AAA ACT AGG AGT AAA CGA GAT AGG ACT AGC AAG AAT GCA ATT GAT GGC CCC ATT ACT TTC ATC TCC GGT GCT GTG CTT TGT ACG TCG GGG ACC GGC CAA CAA TTT CAG GTG ATT AAG AGC GAA GTG CTA GAA ACG TGC GTA CAG CTA CCT GTC CAA ATT

TTA CCA GCC TTT CAT ATG AGA GAG TCG TGC ACG CAC TAC AGT GGC TCG GAA AGT CTT AGG CGT GCA GCC GCT TGT CCA CCG TTT CTC TAT AAC AAT GAA CAC GAT GTC CAA TGC ACA ATT TCT ACG CAA GAC TCC GGC ATC ACC ATT TTT TTG CGC AGA TTT GCA CGC CAT GCG ATT ACA CAT CGT TCA AAG AAT TTA CTG AAA ACT AGG AGT AAA CGA GAT AGG ACC AGC AAG AAT GCG ATT GAT GGC CCC ATT ACT TTC ATC TCC GGT GCT GTG CTT TGT ACG TCG GGA ACC GGC CAA CAA TTT CAG GTG ATT AAG AGC GAA GTG CTA GAA ACG TGC GTA CGG CTA CCT GCC CAA ATT

CTG TGT GGC ATA CAC TGG GAC TAC AAT GTT CGC TTG ATG ACG TTT TCC ATG CGG AGC CAT TAC AAA ACA ATT TGC ATG CGG CCA AGT AGG CTA TAT TTG GTT GGG CTG GCT GCT AGG GTC ATT TAC CGC CCC TCA TGG ATA TCT GTA CCG TAT AGT AGT GTG GGT CAC GCA AGG TCA GAG CTG GGG CAT GAG ACG GTG GTA GCT GGT AGA TGG ATC AGA GTT ACT GTC GAC ATC AGG ACC CGC ATC CAG GAT CAC AAT CTT G T A T T T A G C A A A A G A G A T A C G C G C C C G A T A T C T

CTG TGC GGC ATA CAC TCG GAC TAC AAT GGT CGC TTG ATG ACT ACT TTC ATG CGG AGG AAT AAC AAA ACA ATC TGC AAG GGG CCA AGC ACC CTA TAT TTG GAT AGG CTG GCT ACT AGG GTT ATG TAC CGC CCC TCA TGG AGA TCC ATA CCG CAT AGC AGT GTG GGT CAT GCA AGG TCA GAG CGG GGT CAT GTG ACG GTG GGG GCT GGT AGA TGC ATT AGG GTT ACT GTC GAC ATC AGG ACC CGC TTC CAG TTT TAC AAC CTT G T A T T T A G C A A G A G A G A T A C G C A C C C G A T A C C T

CTG TGC GGC ATA CAC TCG GAC TAC AAT GGT CGC TTG ACG ACT ACT TTC ATG CGG AGG AAT AAC AAA ACA ATC TGC AAG GGG CCA AGC ACC CTA TAT TTG GTT AGG CTG GCT ACT AGG GTT ATA TAC CGC CTC TCA TGG AGA TCC ATA CCG CAT AGT AGT −−− GGT CAT GCA AGG TCA GAG CGG GGT CAT GTG ACG GTG GGG GCT GGT AGA TGC ATT AGG GTT ACT GTC GAC ATC AGG ACC CGC TTC CAG TTT AAC AAC CTT G T A T T T A G C A A G A G A G A T A C G C G C C C G A T A C C T

G A A T G C A A C C T G A A T C T G G G A T A T T C C C T G C C G G T T C A G T A T G T C C A A G C C C T G G A T A C T A A A G C C A C T A C A C T C A T G G C A C T A C C G G T T G C G G G G T G A G T A G G A C G C A C G T C C C C G T G A

G A A T G C A A C C T G A A T C T G G G A A A T T C C C T G T C G G T T C A A T A T G T C C A A G C C C T G G A T A C T A A A G C C A C T G C A C T C A T G G C A C T A C C G G T T G C G G G G T G A G C A G G A C G C A C G T C C C C G T G A

G A A T G C A A C C T G A A T C T G G G A A A T T C C C T G C C G G T T C A A T A T G T C C A A G C C C T G G A T A C T A A A G C C A T T G C A C T C A T G G C A C T A C C G G T T G C G G G G T G A G C A G G A C G C A C G T C C C C G T G A

A G G A C G G A T G C C C A T G C T A C C T A C T G G T T G G G A A A T T A C C G G A G G A G AAG GGT CCC GAA CGA TAC AAA ATC CAT CGG GGG GTT TCA GAA AGG GAC TAC ACT TCT CGA AGA TTG GCC ATC GCG TGG GCA GCC GAC GGA TTA ACG ACA CAG CCC GAG TAT ATG ACG GAT GTT CCA TCC GGG ACT TAC GGC GAT TAT CAC TCG GTC CTT TTA AGG AAG GAA ATA ATC GAA TCC GAC AAT AGC AGA CTG GAT TTC AGT GAC TGC CCC ACA

A G G A C G G A T G C C G A T G C T A C C T A C T G A T T G G G A A A T T A C C G G A G G A G AAG GGT CCC GAA CGA TAT AAA ATC CAT CGA GGG GTT TCA GAA AGG GAC TAC ACT TCT CGA AGA TTA GCT ATC GCG GGG GCA GCC GAC GGA TTA ACG ACA CAG CCC GAG TAT ATG ACC GAT GTG CCA TCC GGG ACT TAC GGC GAT TAT CAT TCG GTC CTT TTA AGG AAG GAA ATA ATC GAA TCC GAC AAT AGC AGA CTG GAT TTC AGC GAC TGC CCC ACA

A G G A C G G A T G C C G A T G C T A C C T A C T G A T T G G G A A A T T A C C G G A G G A G AAG GGT CCC GAA CGA TAT AAA ATC CAT CGA GGG GTT TCA GAA AGG GAC TAC ACT TCT CGA AGA TTA GCT ATC GCG GGG GCA GCC GAC GGA TTA ACG ACA CAG CCC GAG TAT ATG ACC GAT GTG CCA TCC GGG ACT TAC GGC GAT TAT CAT TCG GTC CTT TTA AGG AAG GAA ATA ATC GAA TCC GAT AAT AGC AGA CTG GAT TTC AGT GAC TGC CCC ACA

CTT GTG ATC CCT ATT AAT GAG GTG TTG GAC AGC ACA TGT TAT TCA TGT AAG ATC GGT CTT GCC AAT AGT ATA AAC GAC GAG GAA TGC GCG TTG TGC GGA AGG TCA CAG CTC TTT GTT GGA CGT AGA GTC CAT GAG CTC GTA CCT GGA GCG TCC ACC ACT CGG CTT TTA AAG TCA ACG CGT AAT TCC CAT CTA AAA CCT TCA ACC TCT GTG TGC TGT CAG ACG CGG CTA ATA GCC CGA CTT AGC AAA TTA CGT ATT GGG TCG ATC ATG TGC CCG CAG ACA TAT GAA ACA CAC TTT ACC GGA TTG CTC GTG AGA CTG CGA AGG CAT AGG TCG GGT ATG AAC ATG TTG ACG CCT TGC GTA ACA

CTT GTG ATC GCT ATT AAT GAG GTG TTG GAC AGC ACA TGC TAT TCA TGT AAG ATT GGT CTT GCC AAT AGT ATA AAC GAC GAG GAA TGC GCG TTA TGC GGA CGG TCA CAG CTC TTT GTT GGA CGT AGA GTC CAT GAG CTC GTA CCT GGA GCG TCA ACC ACT CGA CTT TTA AAG TCA ACG CGT AAT TCC CAT CTA AAA CCT TCA ACC TCT GTG TGC TGT CAG ACG CGG CTA ATA GCC CGA CTT AGC AAG TTA CGT ATT GGG TCT ATC ATG TGC CCG CAG ACA TAT GAA ACT CAC TTT ACC GGA TTG CTC GTG AGA CTG CGA AGG CAT AGG TCG GGT ATG AAC ATG TTG ACG CCT TGC GTG ACA

CTT GTG ATC GCT ATT AAT GAG GTG TTG GAC AGC ACA TGC TAT TCA TGT AAG ATT GGT CTT GCC AAT AGT ATA AAC GAC GAG GAA TGC GCG TTG CGC GGA AGG TCA CAG CTA TTT GTT GGA CGT AGA GTC CAT GAG CTC GTA CCT GGA GCG TCA ACC ACT CGA CTT TTA AAG TCA ACG CGT AAT TCA CAT CTA AAA CCT TCA ACC TCT GTG TGC TGT CAG ACG CGG CTA ATA GCC CGA CTT AGC AAG TTA CGT ATT GGG TCT ATC ATG TGC CCG CAG ACA TAT GAA ACT CAC TTT ACC GGA TTG CTC GTG AGA CTG CGA AGG CAT AGG TCG GGT ATG AAC ATG TTA ACG CCT TGC GTG ACA

GTT TTG CGT GCG GTT ACT CAG G T A G G C A A T A C T G G G A T T C C A C A C A C T A C T G C G G T C G G T A G G A C A T T G A G G G A C T G T G T T A C A C C T T G T G A G T C G G G T A A A G G C A C C T A T T C T T C A T C A G A C T G C T A G C A T T G

GTT TTG CGT GCG GTT ACT CAG G T A G G C A A T A C T G G G A T T C C A C A C A C T A C C G C G G T C G G T A G G A C A T T G A G G G A C T G T G T T A C A C C T T G T G A G T C G G G T A A A G G C A C C T A T T C T T C A T C A A A G T G C T A G C A T T C

GTT TTG CGT GCG GTT ACT CAG G T A G G C A A T A C T G G G A T T C C A C A C A C T A C C G C G G T C G G T A G G A C A T T G A G G G A C T G T G T T A C A C C T T G T G A G T C G G G T A A A G G C A C C T A T T C T T C A T C A A A G T G C T A G C A T T C

C G T C A G A G C C A C C C T G A C T C C G G C T G T A T C A C G G C T T A T A A A C A A G A T A G G G A T G T G T C A G A C G G A A C C C C A T A T G C T T T A A T T T C G A G TCT GAC ATG GCA GCT TCT CTC GCG GCC CAA CCT GGA GGT GGG CTT CGC GTG GGT ATA TTC AAG CGG GGA TGG CGA GGA GCA TAC CTC CTA ACG

C G T A A G A G C C A C C C T G A C T C C G G C T G T A T C A C G G C T T A T A A A A G A T A G G G A T G T G T C A G A C G G A A C C C C A T A T G C T T T A A T C T C T A G TCT GAC ATG GCG GCT TCT CTC GCG GCC CAA CCT GGA GGT GGG CTT CGC GTC GGT ATA TTC AAA CGG GGG TGG CGA GGA GCA TAC CTC CTA ACG

C G T A A G G G C C A C C C T G A C T C C G G C T G T A T C A C G G C T T A T A A A T G A T A G G G A T G T G T C A G A C G G A A C C C C A T A T G C T T T A A T T T C T A G TCT GAC ATG GCA GCT TCC CTG GCG GCC CAA CCT GGA GGT GGG CTT CGC GTC GGT ATA TTC AAA CGG GGG TGG CGA GGA GCA TAC CTC CTA ACG

AAA GGT AAC TCT ATG GGC GTG GTA AAA GGT GCT ATC GAA AAA AAC TGT CCA CAT ACA CGC CGA TAC TAC AGA ACC ACA CAT CTT CGC GGG CGT CGA ATA ACC ATG TCC GGA TCA GGA TGG ATT ATC CTA CTC CTA AAG CTC GGG ATT CGT TTA TTA CTC AGA TAC AAG GTG ACT AAT CAA AGC GCT GTC TGT GAC ATG AAG CAC GGG TTG TGG TGG GCA GAC GCA CAT TCA CTC ATC TTG TGG AAC CAC CAT ACA CCC GCT ACA TGT TTT ATA TAT ATC TTA GAT TCT CAT CAC CGC CCG CGA CTG AAT GAT CTT TTT CGG GAG GAT ACT AGC CTT TCT AGG GAA CCA AGA TCC CTT AGT

AAA GGT AAC TCT ATG GGC GTG GTA AAA GGT GCT ATC GAA AAA AAC TGT CCA CAT ACA CGC CGA TAC TAC AGA ACC ACA CAT CTC CGC GGG CGT CGA ATA ACC ATG TCC GGA TCA GGA TGG ATT ATC GTA CTC TTA AAG CTC GGG ATT CGT TTA TTA CTT AGA TAC AAG GTC ACT AAT CAA AGC GCT GTC TGT GAC ATG AAG CAC GGG TTG TGG TGG GCA GAC GCA CAT TCA CTC ATC TTG TGG AAC CAC CAT ACA CCC GCT ACA TGT TTC ATA TAT ATC TTA GAT TCG CAT CAC CGC CCT CGA CTT AAT GAT CTT TTT CGG GAG GAT ACT AGC CTT TCT AGG GAA CCA AGA TTC CTT AGT

AAA GGT AAC TCT ATG GGC GTG GTA AAA GGT GCT ATC GAA AAA AAC TGT CCA CAT ACA CGC CGA TAC TAC AGA ACC ACA CAT CTT CGC GGG CGT CGA ATA ACC ATG TCC GGA TCA GGA TGG ATT ATC GTA CTT TTA AAG CTC GGG ATT CGA TTA TTA CTC AGA TAC AAG GTC ACT AAT CAA AGC GCT GTC TGT GAC ATG ATG CAC GGG TTG TGG TGG GCA GAC GCA CAT TCA CTC ATC TTG TGG AAC CAC CAT ACA CCC GCT ACA TGT TTC ATA TAT ATC TTA GAT TCA CAT CAC CGC CCA CGA CTT AAT GAT CTT TTT CGG GAG GAT ACT AGC CTT TCT AGG GAA CCA AGA TTC CTT AGT

GCT ACT GCT GTT ACT CGC TTA GAA CCC CCT GTA GAT CCC GTT TCG GGC AGC CGA AGA AGG GCT CTT GTG ATG TCA GAG CGA GCA GCC TAT CGT CCT TAT TCC GCA ACC CAA AAC TCA TCA GCA ACA GGG ACT GGG CCA TAC CAC ACT G T G G G G T C G G A G T T A G T T G A A G A G A T T C A A C T T T T G A C C T G A C A T G C G C G T A A A G G T C T T C C G T A A G

GCG ACT GCT GTA ACT CGC TTA GAA CCC CCT GTA GAC CCC GTT TCG GGC AGC CGA AGA AGG GCG CTT GTG ATG TCA GAG AGG GCA GCT TAT CGT CCT TAT TCC GCA ACA CAA AAC TCA TCA GCA ACA GGG ACT GGG CCA TAC CAC ACT G T G G G G T C G G A G T T A G T T G A A G A G A T T C A A C T T T T G A C C T G A C A T G C G C G T A A A G G T C T T T C G T A A G C C T T

GCT ACT GCT GTA ACT CGC TTA GAA CCC CCT GTA GAC CCC GTT TCG GGC AGC CGA AGA AGG GCG CTT GTG ATG TCA GAG AGA GCA GCC TAT CGT CCT TAT TCC GCA ACA CAA AAC TCA TCA GCA ACA GGG ACT GGG CCA TAC CAC ACT G T G G G G T C G G A G T T A G T T G A A G A G A T T C A A C T T T T G A C C T G A C A T G C G C G T A A A G G T C T T C C G T A A G C C T T

A T C G C C A A G A A T G T A C G A C A G G G T T G T A T T T C G C A C G G C A C G T C A T G C G G A C T G A T T T C A T C T C C C A A T T C A T T T G T T T T A C C T A T A T G T A C T T C G C G G A G G G G G C T C G G G G T T T G

C A T C G C C A A G A A T G T A C G A C A G G G T T G T A T T T A G C A C G G C A C G T C A T G C G G A C T A A T T T C A T C T C C C A A T T C A T T T G A T T T A C C T A T A T G T A C T T C G C G G A G G G G G C C T T T C G G G G T T T G

C A T C G C C A A G A A T G T A C G A C A G G G T T G T A T T T A G C A C G G C A C G T C A T G C G G G C T A A T T T C A T C T C C C A A T T C A T T T G A T T T A C C T A T A T G T A C T T C G C G G A G G G G G C T C G G G G T T T G

A T C T T T C A C C A T C T A A G CTT TGT ATC TAT AAA ACC CGA GTA TTC TCA TGG CCT GGG GAT CTT AAT TGG TCA GGG GGT GCG TGC GTG CGG GGT TTC GTT AAC TCC GCT GGG CTA GGC GGC TCG TTA GAA GGC ATT CAT TCA AAG TTA GAA TGC GTA GGC GCA CGC CTT GCC GTC TAC CCG AGC TTA GAT GTA GTC ACC CCT ATT GCG GCC GGG TGC GTG AGA AAG TCT AGG CTT GTT ATC CTT ATT CTT TTG ACA CCA TAT GGC GGA AGA TAC ACA TTT TGG TAC AAG TCT TCT ATT ACG TAC CAA CCG CGG TCA CGA TAC AAG

G A T A T T T C A C C A T T T A A G CTT TGT ATC TAT AAA ACC CGA GTA TTC TCA TGG CCT GGG GAT CTT AAT TGG TCA GGG GGT GCG TGC GTG CGG GGT TTC GTT AAC TCC GCG GGG GTA GGG GGC TCG TTA GAA GTC ATT CAT TCA AAG TTA GAA TGC GTA GGT GCA CGA CTT GCC GTG TAC CCG AGC TTA GAT GTA GTC ACC CCT ATT GCG GCC GGG TGC GTC AGA AAG TCT AGG CTT GTC ATC CTT ATT CTT TTG ACA CCA TAT GGC GGA AGA TAC ACA TTT TGG TAT AAG TCT TCT ATT ACG TAC CAA CCG CGG TCA CGA TAC AAG

G A T A T T T C A C C A T T T A A G CTT TGT ATC TAT AAA ACC CGA GTA TTC TCA TGG CCT GGG GAT CTT AAT TGG TCA GGG GGT GCA TGC GTG CGG GGT TTT GTT AAC TCC GCG GGG GTA GGG GGC TCG TTA GAA GTC ATT CAT TCA AAG ATA GAA TGC GTA GGT GCA CGA CTT GCC GTG TAC CCG AGC TTA GAT GTA GTC ACC CCT ATT GCG GCC GGG TGC GTG AGA AAG TCT AGG CTT GTC ATC CTT ATT CTT TTG ACA CCA TAT GGC GGA AGA TAC ACA TTT TGG TAC AAG TCT TCT ATT ACG TAC CAA CCG CGG TCA CGA TAC AAG

GAA GCT ACT ATT GAT TCC GGA AAT ATA TCG GTC TGG AAG GTG GCC GCT GTG TGC TCA GCC GGT CGC GGA TGC GCT CAT ACA TGC GGC CAG AGA CGT CCA TTC CCG GGT ACA ACC CTG GGG CGC CAA CCG CTA GTG AAC GGG CGC CTA CCG TGC AGG AAC CCG CGA TGT GAC GCG ACT TCC GCG CTC CGG GAG TTT AGG CAG GGG TCT GAT TCG TAC CCG CGC AGC CCG ATT TTC AGC TTA GAT GTG AGT GAT AGA GCG CAT TCT ACA CAA ATT TCT ACA CTG ACC GAA TGT CGG G T T G A T T G C T A C C T T A T A A T T A

GAA GCT ACT ATT GAT TCC GGA AAT ATA TCG GTA TGG AAG GTG GCC GCT GTG TGC TCA GCC GGT CGC GGA TGC GCT CAT ACA TGC GGC CAG AGA CGT CCA TTC CCG GGT ACA ACC TTG GGG CGC CAA CCG CTT GTG AAC GGG CGC CTA CCA TGC CGG AAC CCG CGA TGC GAC GCG ACT TCC GCG CTC CGG GAG TTT CGG CAG GGG TCT GAT TCG TAC CCG CGC AGC CCG ATT TTC AGC TTA GAT GTG AGT GAT AGA GCG CAT TCT ACA CAA ATT TCT ACA CTG ACA GAA TGT CGG G T T G A T T G C T A C C T G A T A A T T A

GAA GCT ACT ATT GAT TCC GGA AAT ATA TCG GTA TGG AAG GTG GCC GCT GTG TGC TCA GCC GGT CGC GGA TGC GCT CAT ACA TGC GGC CAG AGA CGT CCA TTC CCG GGT ACA ACC TTG GGG CGC CAA CCG CTT GTG AAC GGG CGC CTA CCC TGC CGG AAC CCG CGA TGT GAC GCG ACT TCC GCG CTC CGG GAG TTT CGG CAG GGG TCT GAT TCG TAC CCG CGC AGC CCG ATT TTC AGC TTA GAT GTG AGT GAT AGA GCG CAT TCT ACA CAA ATT TCT ACA CTG ACC GAA TGT CGG G T T G A T T G C T A C C T G A T A A T T A

T C T A A G A C T T C A C G A T G C G T C T C C T T G G G C A A T T G A T A A A C C T G T T G A C T T T T G G C G G A C G C C G G T G G A A C C G C G T C G G A C C T T T G C A C C C T T C T G G A T A C G T C T T T C A C A A C C C T C C A

T C T A A G A C T T C A C G G T A C G T C T C C T T G G G C A A T T G A T A A A T C T G T T G A C T T T T G G C G G A G G C C G G C G G T G A C C G C G T C G G A C C T T T G T A C C C T T T T G G A T A C G T C T T T C A C A G C T C C C C A

T C T A A G A C T T C A C G G T A C G T C T C C T T G G G C A A T T G A T A A A T C T G T T G A C T T T T G G C G G A G G C C G G C G G T G A C C G C G T C G G A C C T T T G T A C C C T T T T G G A T A C G T C T T T C A C A A C T C C C C A

G C G A C C C G T T C C C T T C C A A T A G A C T T T C T G C T T A G A G A C T C A T A T T G G A A T G A T C A A G CCC ACC GCT CCC GTA GGG CAG GGA CAT AGT CCT CAC CGC TAT TAC TTA GCA GAG ATT GCG CAG TGC GCG GAA CCA CAC CTA GGT GCG TTC ACA TGG TTT AGC CTC CTG GGT AAG ATG GAA ATA ATG GCG ATT CTG GAT CGG TCA CCC CTA ACA ATT CGA GAT CCG TCG AAT CTG GTC GAT CAA ATG

G C G A C C C G T T C C C T T C C A A T A G A C T T T C T G C T C A G A G A C T C A T A T T G G A A T G A T C A A G CCC ACC GCG CCC GTT CAG CAG GGA CAT AGC CCT GAC CGC TAT TAC TTG GCA GAG ATT GCG CAG TGC GCG GAA CCA CAC CTA GGT GCG TTC ACA TGG TTT AGC CTG CTA GGT AAG ATG GAA ATA ATG GCG ATT CTG GAT CGG TCT CCG CTC ACA ATT CGA GAT CCG TCG AAT CTT ATC GAT CAA ATG

G C G A C C C G T T C C C T T C C A A T A G A C T T T C T G C T C A G A G A C T C A T A T T G G A A T G A T C A A G CCC ACC GCG CCC GTT CAG CAG GGA CAT AGC CCT GAC CGC TAT TAC TTG GCA GAG ATC GCG CAG TGC GCG GAA CCA CAC CTA GGT GCG TTC ACA TGG TTT AGC CTG CTA GGT AAG ATG GAA ATA ATG GCG ATT CTG GAT CGG TCA CCG CTC ACA ATT CGA GAT CCG TCG AAT CTT ATC CAT CAA ATG

TGG GCA ACT ATT GAG ATT GGC ACG CTT ATC GGA GTT TCA GGC ACA GAC AAC GCA GCT AAA ACG GTA GAC ACG AGC CAG GAA ATC TTA TTG CAA ATT TCG CCT GGA AGA GGA ACG TCG CGT AGC CCT GGC GGG CTG CAA CCC GGT TTT AAC CGG GTT CAG GCA GAC GAT GGC ATC CAA CAG CGA GCC TGT AAT AAG TCT TGT AAG TTA GCT AAT AAT GCC TTG TTA TGT GAC TAT CCG TCC AGA AGG GGC GAG GTG GAG AAG GGT TCC GTA GCC AGA GTG CGG TGC TAT TAC TAC CTC GCG ACA GAC AAA ATC CAA TTG GGC TAT CGA CCT TCT ATC GAT AAG AGG GAT GCT TGT CCG GCC

TGG GCG ACT ATT GAG ATT GGC ACG CTT ATC GGA GTT TCA GGC ACA GAC AAC GCA GCT AAA ACA GTA GAC ACG AGC CAG GAG ATC CTA TTG CAA ATT GCG CCT GTA AGA GGA ACG TCG CGC AGC CCT GGC CGA CTG CAA CCC GGT TTT AAC CGG GTT CAG GCA GAC GAT GGC ATC CAA CAG CGA GCC TGT AAT AAG TCT TGT AAG CTA GCT AAT AAT GCC TTG TTA TGT AAC TAT CCG TCC AGA AGG GGC GAG GTG GAG AAG GGT TCC GTA GCA AGA GTT CGC TGC TAC TAC TAC CTC GCG AAT GAC AAA ATA CAA TTG GGC TAT CGA CCT TCT ATA GAT AAG AGG GAT GCT TGT CCG GCC

TGG GCG ACT ATT GAG ATT GGC ACG CTT ATC GGA GTT TCA GGC ACA GAC AAC GCA GCT AAA ACA GTA GAC ACG AGC CAG GAG ATC CTA TTG CAA ATT GCG CCT GTA AGA GGA ACG TCG CGC AGC CCT GGC CGA CTG CAA CCC GGT TTT AAC CGG GTT CAG GCA GAC GAT GGC ATC CAA CAG CGA GCC TGT AAT AAG TCT TGT AAG TTA GCT AAT AAT GCC TTG TTA TGT GAC TAT CCG TCC AGA AGG GGC GAG GTG GAG AAG GGT TCC GTA GCA AGA GTT CGC TGC TAC TAC TAC CTC GCG AAT GAC AAA ATC CAA TTG GGT TAT CGA CCT TCT ATT GAT AAG AGG GAT GCT TGT CCG GCC

CTT GGA AAC TCA ACC GTG AGG GTA AGT CAC GTA AGA GGA GTA GGA AGC ACT GAG G T A A T T G G A G A G C A A T T G A G T G A G G A T A A C T C T C G C C A G C A T T G A A T A G A C T T C A C T A G A C A G C C A A T G A G A A G G T G T T A A G C T T C A G G G T A C A G T T T G T G C

CTT GGA AAC TCA ACC GTA AGG GTA AGT CAC GTA AGA GGA GTA GGG AGC ACT GAG G T A A T T G T A G A G C A A T T G A G T G A G G A T A A C T C T C G C C A G C A T T G G A T A G A C T T C A C T A G A C A G C C A A T G A G A A G G T G T T A A G C T T C A G G G T A C A G T C T G T G C

CTT GGA AAC TCA ACC GTA CGG GTA AGT CAC GTA AGA GGT GTA GGG AGC ACT GAG G T A A T T G T A G A G C A A T T G A G T G A G G A T A A C T C T C G C C A G C A T T G G A T A G A C T T C A C T A G A C A G C C A A T G A G A A G G T G T T A A G C T T C A G G G T A C A G T C T G T G C

T C G A G T A T G C T A A C A C T A T T C T A G T C G A A C T T T A A A G A C A T G C T C A C C G T T C A T A G C A A C T C G T G C A A A C G T C T T C T C T C C G C T C G G A C C G A C G C C A G AGT ACT ATA GCC TCC CCC AAC CAT GCA CAT GAG TCG GAG AAT GCG TGG CAA GCG CTT GCT GTC TCT

T C G A G T A T G C G A A C A C T A T T C T A G T A G A A C T T T A A A G A C A T G C T C A C C G T T C A T T G C A A C T C G T G C A A A C G T C T T C T C T C C G C T C G G A C C G A C G C C A G ACT ACT −−− −−− TCG CCC AAC GAT GCA CAT GAG TCG GAG AAT GCG TGG CAG GCG GTT GCT GTC TCT

T C G A G T A T G C G A A C A C T A T T C T A G T A G A A C T T T A A A G A C A T G C T C A C C G T T C A T T G C A A C T C G T G C A A A C G T C T T C T C T C C G C T C G G A C C G A C G C C A G ACT ACT −−− −−− TCG CCC AAC GAT GCA CAT GAC TCG GAG CAT GCG TGG CAA GCG CTT GCT GTC TCT

GCC ATG TCC GAA GCT CCC ACA ACC TGT GAG GAA GAT AAT ACC TCG TAC TAT CTG TTG TCT ACG GCT CCT AGC TAC CGC AGG TGT GCT GCG GAC CGA TTT GTC CAT GCA ATC GAT TTA ACT TTG ACG GGA AAG GAG CAT AGA TAT CCG CGT CTA CGA GAT CCG TTG TAC TGG AGA GTG GGT GTG ATA GTG GAA ATA TCT ATC CGC TGT GCT CCT GCC CCG GCT AGA GAG AAG ATC TAT ATG CGT GCC ATG CAT TGG TGG ATC ACT ACA ACA GCA CTC TGT ACT ATC ATA AAG AGA ATT AGC ATT CCG CAT TAC CTG CTA GGG GTA AAG CCT ACC ACA TGC TCA ACA GGT TTG ATC CGG TGT

GCC ATG TCC GAA GGG CCC ACA ACC TGT GAG GAA GAT AAT ACC TCG TAC TAT CTG TTG TGT ACG GCT CCT GGC TAC CGA AGG TGT GAC GCG GAC CCA TTT GTC CAT GCT ATC GAT TTA ACT TTG ACG GGT AAG GAG GGT AGA TTT CCG CGT CTA CGA GAT CCG TTG TAC AGG AGA GTG AGT GTC TTA GCG GCA AGT TCA AAC CGG TTT GCG CCT GTC CCG GCT AGA GAG AAG ATC TAT ATG CGT GCC ATG CAT GTG TGG ATC ACT ACA ACA GCA GTC TGT ACT ATC ATA AAG AGA ATT AGC ATT CCG CAT TAC GTG CTA GGG CTA AAG CCG ACC ACA TGC TCA ACA GGC TTG TTT CGG TGT

GCC ATG TCC GAA GGG CCC ACA ACC TGT GAG GAA GAG AAT ACC TCG TAC TAT GTG TGG TCT ACG GCT CCT GGC TAC CGA AGG TGT GCC GCG GAC CGA TTT GTC CAT GCT ATC GAT TTA ACT TTG ACG GGT AAG GAG CGT AGA TTT CCG CCT CTA CGA GAT CCG TTG TAC CGG AGA GTG AGT GTC TTA GCG GCA ATT TCA ATC CGG TTT GCG CCT GTC CCG GCT AGA GAG AAG ATC TAT ATG CGT GCC ATG CAT GTG TGG ATC ACT ACA ACA GCA CTC TGT ACT ATC ATA AAG AGA ATT AGC ATT CCG CAT TAC GTG CTA GGG CTA AAG CCG ACC ACA TGC TCA ACA GGC TTT TTT CGG TGT

CTG CGC TAC CAC TGC CCC GAC GGC CTC GAC GCA TCG GAT GAT TGC TTG CTT CGT GGG ATG TTT CCC ACC CTC GGT GAC ATT AGG ACC TGG GCA GAG CCG GAC GTA GTC GCC CAC CGC AAG ACG GGC TGT GAT ATT CAA AAA CCG AAT TTT AGA TCA AAT CGC AAG TCA TGG CAG CGT GCA GCG GTG ATA TTC CTA CAA TCC CTG GAC CCA AAC TTG GGT CCT ACG TAT ATG TTT GAC GGG CTG CTG TGT AGT AAC GTA ATT TTC TTA GTA ATA CAA AAG TAT ACA GGA GCG GTT ACG GCA ATG TAC GCT GTC AGA ATC CAT ATC GTG CGC GCC GCT GTT TGC CAT TTT AGT ACC TTT TTG

CTG CGC TAC CAC TGC CCC GTC GGC CTC GAC GCA TCG GAT GTT TGC GTG CTT CGT GGG ATG TTC CCC ACC CTC TGG GAC ATT AAG ACC TGG GCA GAG CCA GCC TTA GTC GCC TAC CGC AAG ACG GGC TGT GAT ATT CAA AAA GCG AGT TTG AGA TCA GAT AGG AAG TCC −−− −−− −−− ACA GAG GTG ATA TTC CTA CAA TCC GTG GAC CCA AGC TTG GGT CCT ACG TAT ATT TTT GAC GGG CTG CTG TGT AGT AAC GTA ATT TTC TTA GTA ATA CAA AAC TAT ACA GGA GCG GGT ACG GCA ATT TAC GAT TTG AGA AAC CAT TTC GTG ACC GAC GCT GTT TCC CAT TTT AGT AAC TTT TTG

ATG CGC TAC CAC TGC CCC GTC GGC CTC GAC GCA TCG GAT GTT TGC TTG CTT CGT GGG ATG TTT CCC ACC CTC TGG GAC ATT AAG ACC TGG GCA GAG CCA GCC TTA GTC GCC TAC CGC AAG ACG GGC TGT GAT ATT CAA AAA GCG AGT TGG AGA GCA GAT AGG AAG TCC −−− −−− −−− ACA GAG GTG ATA TTC CTA CAA TCC GTG GAC CCA AGC TTG GGT CCT ACG TAT ATT TTT GAC GGG CTG CTG TGT AGT AAC GTA ATT TTC TTA GTA ATA CAA AAC TAT GCG GGA GCG GGT ACG GCA ATT TAC GAT TTC AGA AAC CAT TTC GTG AGC GAC GCT GTT TCC CAT TTT AGT AAC TTT TTG

ACC GCG GGG TGT CTA GGG GTG GTG TTT TTC GGG GTG CTT GAT CGT TCT CGC CAC TCT ATA GGA TCA GGA GAC AAG GAT GGC CAG GCA TCA ACC GAG ACT AAG CAC AAA ACC ATA CGT GGA CCA AGT GGA CCT ACG AGT GCC ATC CCC ACC TAT TGT TCC TTA GCG ACA −−− −−− CGA AAG GAC CAG CAA CTA GTG CGG TAC AGT TTT TTA TAT CAT CAA TTC GTG AGC AAC GGT AAC CAG TGT TCG AAT GTT AGC CGT TTT AAG CCC GTG CCG CAT AAG GGC GCG GGA CTC CTG GCA GAC ATT CTT CGC AAA CTT TTT ATG TGG GGG ATC GTA CGC GTT CCC AGA ATA AAA TTT GCC CTT

ACC TCG TGG TGT CTA TGG GTG GTG TGT TCC GGG GTG CAG GAT CGT TCT CGC CAC TCT ATA GGC TCA GGA GGC AAG GAT GCC CAG GCA TCA ACG GGG ACT AAG CAC AAA CCC ACA CGT GGA CCA AGT GGT CAT AAG CGG GCC ATC GCC ACA TAT TTT TCC TTA GCG ATA −−− −−− CGA AAG GAC CAG AAA CTA GTG CGG TAC AGT TTT TTA TTT CAT CAA TTC GTG CGC −−− −−− AAC CAC TGT TCG AAT GTT AGC CGT TTT AAG CCC TTT CCG AAT AAG GGC GCG GGC CTC CTG GTA GAC ATT CTT CGC AAA CTT TTT ATG TCG GGG ATC GTA CGC GTT CCC AGA ATA AAA TTT GCG TTT

ACC GCG TGG TGT CTA TGG GTG GTG TGT GCC GGG GTG CAG GAT CGT TCT CGC CAC TCT ATA GGC TCA GGA GGC AAG GAT GCC CAG GCA TCA ACG GGG ACT AAG CAC AAA CCC ACA CGT GGA CCA AGT GGT CAT ACG AGG GCC ATG GCC ACA TAT TTT TCC TTA GTG ATA CGC CGC CGA AAG GAC CAG AAA CTA GTG CGG TAC AGT TTT TTA TTA CAT CAA TTC GTG CGC −−− −−− AAC CAC TGT TCG AAT GTT AGC CGT TTT AAG CCG TTT CCG AAT AAG GGC GCG GGC CTC CTG GTA GAC ATT CTT CGC AAA CTT TTT ATG TGG GGG ATC CTA CGC GTT CCC AGA ATA AAG TTT GCG TTT

CAC ACT GCC TTA TCT AGG GCT TCA GAT CAC CTT ACC CAT GGC CCG TTG GGT ATC TCA ATC AGG CTT GTA TGA G G C T C G A C A T G A C G T G T T C G T C T A A C C G C A C T T T T C T G G G T T C T A G G A G C A C T C G T A A C T T T C C A A A A A C G A T T C G G A G T C T A T T C T G G T G A G A A A

CAC ACT GCC TTA TCT AGG GCT TCA GAT AAC CTT ACC CAT GGC ACG TTG GGT ATG TCC ATC AGG CTT GTA TGA G G C T C G A C A T G A C G T G T T C G T C T A A C C G C A C T T T T C T G A G T T C A A G G A G C A C T C G T A A C T T T C C A A A G A C G A T T C G G A G T C T A T T C T G G T G A G A A A

CAC ACT GCC TTA TCT AGG GCT TCA GAT AAC CTT ACC CAT GGC ACG TTG GGT ATG TTC ATC AGG CTT GTA TGA G G C T C G A C A T G A C G T G T T C G T C T A A C C G C A C T T T T C T G A G T T C A A G G A G C A C T C G T A A C T T T C C A A A G A C G A T T C G G A G T C T A T T C T G G T G A G A A A

T C G A A T C G G A C A T T G C G C C T A A T A A G A A G C G C A T A A G G A G C A C T A G G T A T C G G A A A A G G G G T A G A T G C G C G C C T T G G A C T T A G T A A A T G C C A T T C C A C C G C G C G C G T T C C A C G C A C T C C T

T C A A A T C G G A C A T T T C G C C T A A T A A G A A G C G C A T A A G G A G C A C T A G G T A T C G G A A A A G G G G T A G A T G C G C G C C T T G G A C T T A G T A A A T G C C A T T C C A C C G C G C G C G T T C C A C A C A C T C C T

T C A A A T C G G A C A T T T C G C C T A A T A A G A A G C G C A T A A G G A G C A C T A G G T A T C G G A A A A G G G G T A G A T G C G C G C C T T G G A C T T A G T A A A T G C C A T T C C A C A G C G C G C G T T C C A C A C A C T C C T

A A A C A G A T G T C G C A T G T T T G C A C G G G T C A G A T C T A A A C A T C A C A G G G T T A G A T G A G A A G T A C T T G A G T A G T T T G A G C A A C C A A A G A T C C T G T A C C A G A A T C G A C T C C G A C T A C G G G A G T A

A A A C A G A T G T C G C A T G T T T G C A C G G G T C A G A T C T A A A C A T C A C A G G G T T A T A T G A C A A G T A C T T G A G T A G T T T G A G C A A C C A A A G A T C C T G C A C C A G A A T C G A C T C C G A C T A C G G G A G T A

A A A C A G A T G T C G C A T G T T T G C A C G G G T C A G A T C T A A A C A T C A C A G G G T T A T A T G A C A A G T A C T T G A G T A G T T T G A G C A A C C A A A G A T C C T G C A C C A G A A T C G A C T C C G A C T A C G G G A G T A

A T A T A A G T T A C G T G C G A G C A T C C C G A A T T C G T A A G T T A G G G C T T A A C C C A C C C A C T A A A C C A C A A G A A A C C G C C C C A C T C C A G T T G G G C G A C C A T G G A C G C G G A T C T T T C G T G G G C C C T A

A C A T A A G T T A C G T G C G A G C A T C C C G A A T T C G T A A G T T A G G G C T T A A C C C A C C C A C T A A A C C A C A A G A A C C C G C C C C A C T C C A G T T G G G C C A C C A T G G A C G C G G A T C T G T C G T G G G C C C T A

A A A T A A G T T A C G T G C G A G C A T C C C G A A T T C G T A A G T T A G G G C T T A A C C C A C C C A C T A A A C C A C A A G A A C C C G C C C C A C T C C A G T T G G G C C A C C A T G G A C G C G G A T C T G T C G T G G G C C C T A

C C A G C T T G C C C A C T C T C A T C G T A A C C C C G T A A T T C T G G A C T C G A C T A A A G C G C G A G C A G T T T T T T T A G T C T T C A G A G G A T T A G A T C G G C T A C C C C G A C C C T C T T G G G G A G T G C C G G T C G A

C C A G C T T G C C G A A T C C C A T C A T A A C C C C T T A A T A C C G G A C T C G A C T A A A G C G C G A G C A G T T T T T T T A G T C T T C A G A G G A T T A G A T C G G C T A C C C C G A A C C C C T T G C G G A G T G C T G G T C G A

C C A G C T T G C C G A A T C T C A T C A T A A C C C C T T A A T A C C G G A C T C G A C T A A A G G G C G A G C A G T T T T T T T A G T C T T C A G A G G A T T A G A T C G G C T A C C C C G A C C G C C T T G C G G A G T G C T G G T C G A

C T T G G A C G C T A T T G G C T C T G T T C A C A G G C G C T T C C T G A G G A G G T G G A C A A A T C T C A G C A G G G G T C T T C G A G G G G C G A C G G A G T T T A G C T A C G G C G T G T T T G C G C C C C A A T G G C T G G C G T G

C T T G G A C G C T A T T T G C T C T G T T C A C A G G C G C T T C C T G A G G A G G T G G A C G A A T C T C A G C A G G G G T C T T G G A G G T G C G A C G G A G T T T A G C T A C G G C G T G T T T G C G C C C C A A T G T C T G G C G T G

C T T G G A C G C T A T T T G C T C T G T T C A C A G G C C C T T C C T G A G G A G G T G G A C A A A T C T C A G C A G G G G T C T T G G A G G T G C G A C G G A G T T T A G C T A C G G C G T G T T T G C G C C C C A A T G T C T G G C G T G

C C A T A A C A G G T T A A A T C G C A G A T G A C C A G A A T G T A C T G A T A C G A G A G A A T T C G A A C A A C A G G T G T A G T T T G A G G A T G A T A G T A T T T C C G G T A T C A C A T G A T G T A A T T C T A C C A G T A C C T C

C C A T A A C A C G T T A A A T C G C A G A T G A C C A G A A T G T A C T G A T A C G A G A T A A T T C G A A C A A C A G C T G T A G T T T G A G G A T G A T A G T A T T T C C G G T A T C A C A T G A T G T A A T T C T A C C C G T A C C T C

C C A G A A C A C G T T A A A T C G C A G A T G A C C A G A A T G T A C T G A C A C G A G A T A A T T C G A A C A A C A G C T G T A G T T T G A G G A T G A T A G T A T T T C C G G T A T C A C A T G A T G T A A T T C T A C C C G T A C C T C

T T T C T T G G T C C T T C T T A C G G T A C T T A A A G A G A G A T C T A C A C C A T T G C A T T G A T C G G T T G A T T C C A T T C G C C C C A T A T C G G G C G C G A G T G A C C C C A T C A C G G C T A T A T T G C A C G G T C T C C T

T T T C T T G G T C C T T C T T A C G G T A C T T A A A G A G A G A T C T A C A C C A T T G C A T T C A T C G G G T G A T T C C A T T C G C C C C A T A T C G G G C G C G A G T G A C C C C A T C A C G G C T A T A T T G C A C G G T C T C C T

T T T C T T G G T C C T T C T T A C G G T A C T T A A A G T G A G A T C T A C A C C A T T G C A T T T A T C G G G T T A T T C C A T T C G C C C C A T A T C G G G C G C G A G T G A C C C C A T C A C G G C T A T A T T G C A C G G T C T C C T

C T G G T T A G G T A T G A T G T C C A C A C A G C A T C T T C C G A G T G A C A G A C G C A G C A T C C G C G A G C T T C T T C G C T T C A T A G G A T C C A G C G C A A A C A T C T G A G C A G G A T C T A G A C C C T T C T A A G C T T C

C C G G T T A G G T A T G A T G T C C A C A C A G C A T C T T C C G A G T G A C A G A C G C A G C A T C C G C G A G C T T C T T C G C T T C A T A G G A T C C A G C G T A G A C A T C T G A G C A G G A T C T A G A C C C T T C T A A G C T T C

G C G G T T A G G T A T G A T G T C C A C A C A G C A T C T T C C G A G T G A C A G A C G C A G C A T C C G C G A G C T T C T T C G C T T C A T A G G A T C C A G C G C A G A C A T C T G A G C A G G A T C T A G A C C C T T C T A A G C T T C

T T C G T C G A A A T T A C T A A T G A T C C G C C C T G T A C A T G T G A G T T G C T C G T A C C C C G T G A A T G G C A T G T A T T G C C A C G C A A G G A C C G C T G C G A C C C C T G G G G C C G C T C C A A G G T A G C T C G A A T G

T T C G T C G A A A T T A C T A A T G A T C C G C C C T G T A C A T G A G A G T T G C T C G T A C C C C G T G G A T G G C G A A T A T T G C C A C C C A A G G A C C G C T G C G A C C C C T G G G G C C G C T C C A A G G T A G C T C G A A T G

T T C G T C G T A A T T A C T A A T G A T C C G C C C T G T A C A T G A G A G T T G C T C G T A C C C C G T G G A T G G C G A A T A T T G C C A C C C A A G G A C C G C T G C G A C C C C T G G G G C C G C T C C A A G G T A G C T C G A A T G

C C A A C C A C G G C G T T A C T T T G T A C C G A T T C C G A T C T A G G T G G T T A G T A A A G C T A C C T C A C G T T G G A C G C G T A C T A G A C G T T T T A T A T T G C T A T C T G C A T A G G C T A C T G C G C C C G C A A C T A C

C C A A C C A C G G C G T T A C T T T C T A C C G A T T C C G A T C T A G G T G G T T A G T A A A G C T A A C G C A C G T T G G A C G C G T A C T A G A C A T T T T A T A T T G C T A T C T G C A T A G G C T A C T G C C C C C G C A A C T A C

C C A A C C A C G G C G T T A C T T T C T A C C G A T T C C G A T C T A G G T G G T T A G T A A A G C T A A C G C A C G T T G G A C G C G T A C T A G A C G T T T T A T A T T G C T A T C T G C A T A G G C T A C T G C C C C C G C A A C T A C

C G T A T C G A C A A C G G C G A C T A T T G T G G A T A C T A C C C T C A G G A A A G C T T T G T G T A C A A T C A A G A A G T G C C A T C C G C G G A G T A G C G G A G T G G G C A T G C T A C C C A T G A

C G T A T C T A C A A C G G C G A C T A T T G T G G A T A C T A C C C T C A G G A A A G C T T T G T G T A C A A T C A A G A A G T G C C G T C C G C G G A G T A G C G G A G T G G G C A T G C T A G C C A T G A

C G T A T C T A C A A C G G C G A C T A T T G T G G A T A C T A C C C T C A G G A A A G C T T T G T G T A C A A T C A A G A A G T G C C G T C C G C G G A G T A G C G G A G T G G G C A T G C T A G C C A T G A

1−
120

121−
240

241−
360

361−
480

481−
600

601−
720

721−
840

841−
960

961−
1080

1081−
1200

1201−
1320

1321−
1440

1441−
1560

1561−
1680

1681−
1800

1801−
1920

1921−
2040

2041−
2160

2161−
2280

2281−
2400

2401−
2520

2521−
2640

2641−
2760

2761−
2880

2881−
3000

3001−
3120

3121−
3240

3241−
3360

3361−
3480

3481−
3600

3601−
3720

3721−
3840

3841−
3960

3961−
4080

4081−
4200

4201−
4320

4321−
4440

4441−
4560

4561−
4680

4681−
4800

4801−
4920

4921−
5040

0 30 60 90 120

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

0.00 0.02 0.04 0.06

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

t1

t2

t3

Save alignment:

> saveAlignment(sim,file="example_V3.4.fas");

Disable fast & careless mode:

> rm(PSIM_FAST)

4 Details of the fast field deletion model

A natural way to incorporate deletions into the Gillespie framework is to assign an individual rate to every
possible deletion event. Modelling in this manner is extremely general but requires a lot of specification:
not only individual sites’ tolerance to deletion but also of how they interact with neighbouring sites.
Instead we propose a more restricted “field model” of deletion that generalises previous work to allow the
rate at which deletions occur to vary across the sequence but only requires one parameter per site – its
deletion tolerance – to be specified. Under this model, deletions are proposed in same manner as other
events, specifying a rate of occurrence and a distribution of lengths and then assuming that the location
and orientation of the deletion is chosen uniformly, but proposed deletions may then be rejected based
on sites they propose to remove.

41

Firstly consider only single-site deletions and let each site, i, in the sequence have an associated deletion
tolerance parameter, di ∈ [0, 1], representing the probability that it is actually deleted given that a
deletion is proposed. A proposal / acceptance step is equivalent to just proposing at a slower rate, so
this is just a special case of the most general model but one that can be implemented efficiently as a single
Gillespie event (a deletion occurred somewhere) rather than a large number of slower events (treating
every possible deletion separately). Sites where di = 1 are deleted at the background rate, sites with
di < 1 are deleted more slowly, and sites with di = 0 are never deleted. For proposed deletions that span
multiple sites, I, each site is considered independently and the proposed deletion is accepted if and only
if every site accepts it: the total probability of acceptance is therefore

∏
i∈I di.

It is natural to think of the background rate of deletion as a neutral rate but this is not necessary and
can lead to the Gillespie algorithm becoming inefficient: for example, an extremely deletion intolerant
sequence will reject almost all deletions proposed and so waste many steps. Instead we can rescale the
process (“fast field deletion model”) so that deletions are proposed at a rate equal to what would occur
if the entire sequence had a deletion tolerance equal to its most tolerant site (deletion tolerance d) and
then accept a deletion spanning sites I with probability di/d. Table 1 gives the rate scaling factor and
distribution of deletion lengths after scaling for a variety of distributions that could be used to model
deletion length. In most cases, the rescaled distribution of deletion lengths is a member of the same
family as the “neutral” process.

Distribution Density Scale factor Rescaled distribution

Geometric, Geom(λ) λk−1(1− λ) d 1−λ
1−dλ Geom(dλ)

Poisson + 1, Po+1(λ)
e−λλk−1

Γ(k) de−λ(1−d) Po+1(dλ)

Conway-Maxwell Poisson + 1, CMP+1(λ, ν)
λk−1

Γ(k)νZ(λ,ν) d Z(λ,ν)
Z(dλ,ν) CMP+1(dλ, ν)

Negative Binomial + 1, NB+1(λ, r)
Γ(r+k−1)
Γ(k)Γ(r) (1− λ)rλk−1 d (1−λ)r

(1−dλ)r NB+1(dλ, r)

Table 1: The rate scaling factor and distribution of deletion lengths after scaling for a variety of distri-
butions that could be used to model deletion length.

42

	Getting help
	Basic examples
	Simulating substitutions under the JC69 model
	Compact example
	``Unrolled'' example

	Simulating substitutions under the HKY model
	Simulating among-sites rate variation
	Simulating under the discrete gamma (GTR+d) model
	Simulating under the invariants and discrete gamma (GTR+I+d) model

	Simulating indels
	Insertion and deletions having the same length distribution
	Insertion and deletions having different length distributions
	Simulating indels under selective constraints

	Simulating partitions
	Simulating heterotachy
	Simulating many replicates
	Simulating many replicates in parallel

	Advanced examples
	Simulating ``domains'' and heterogeneous evolution
	Evolving codon sequences
	Implementing a new process
	Evolving a genomic region containing a ``gene''

	Details of the fast field deletion model

