-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslides.py
128 lines (116 loc) · 5.48 KB
/
slides.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#Data manipulation and analysis imports
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
#Plotting imports
from bokeh.io import curdoc
from bokeh.models.glyphs import Text
from bokeh.layouts import row, widgetbox, gridplot
from bokeh.models import ColumnDataSource
from bokeh.models.widgets import Slider, TextInput
from bokeh.plotting import figure
def lagged(df_original, lags = None, regression = True,
units = 'Units', pred_title = 'Predictor', resp_title = 'Response'):
"""Create a bokeh plot of lagged time series
input: df_original = {'time','pred','resp'};
regression = True means add the line of best fit and calculate r2;
no output"""
#Set axis limits
if not lags:
lags = np.arange(-36,36)
lag = 0 #Initial lag
#Create r2
#df_r2 = pd.DataFrame(index = lags, columns = ['r2', 'r2_x', 'r2_y', 'alpha', 'beta','filled'])
ax_lim = 1.1*np.max(np.abs(np.array([df_original['pred'],df_original['resp']])))
x_plot = np.linspace(-ax_lim,ax_lim)
def linear_regression(df, x_plot):
"""Calculate out the linear regression and r2 score"""
#Instantiate the linear regression model
model = LinearRegression()
#Fit the model
model.fit(df['pred'][:,np.newaxis],df['resp'])
#Get the intercept
alpha = model.intercept_
#and the slope
beta = model.coef_
#Calculate the r2 score
r2 = r2_score(df['resp'],model.predict(df['pred'][:,np.newaxis]))
#Position for the r2 text annotation
r2_position = [-ax_lim + 0.1*ax_lim, ax_lim - 0.1*ax_lim]
r2_text = "R^2 = %02f" % r2
return alpha, beta, r2, r2_position, r2_text
#Do linear regression for the initial lag
if regression:
alpha, beta, r2, r2_position, r2_text = linear_regression(df_original, x_plot)
y_plot = alpha + beta*x_plot
#Set the ColumnDataSources for the scatter plot
s1_source = ColumnDataSource(data=dict(x=df_original['pred'], y=df_original['resp'])) #Scatter plot
if regression:
text_source = ColumnDataSource(dict(x=[r2_position[0]], y=[r2_position[1]], text=[r2_text])) #R2 value
line_source = ColumnDataSource(data=dict(x=x_plot, y=y_plot)) #Regression line
#Set the ColumnDataSources for the time series plot
s2_source_pred = ColumnDataSource(data=dict(x=df_original['time'], y=df_original['pred'])) #Scatter plot
s2_source_resp = ColumnDataSource(data=dict(x=df_original['time'], y=df_original['resp'])) #Scatter plot
# Set up initial plot
s1 = figure(plot_height=500, plot_width=500, title="Lagged scatter plot",
tools="crosshair,pan,reset,save,wheel_zoom",
x_range=[-ax_lim, ax_lim],
y_range=[-ax_lim, ax_lim])
s1.scatter('x', 'y', source=s1_source)
s1.xaxis.axis_label = pred_title
s1.yaxis.axis_label = resp_title
if regression:
s1.line('x', 'y', source = line_source, color = 'black')
#Add the r2 text annotation
glyph = Text(x="x", y="y", text="text", text_color="black")
s1.add_glyph(text_source, glyph)
#Set up time series plot
s2 = figure(plot_height=500, plot_width=750, title="Lagged time series",
tools="crosshair,pan,reset,save,wheel_zoom",toolbar_location='right',
x_range=[df_original.time.values[0], df_original.time.values[-1]],
y_range=[-ax_lim, ax_lim])
s2.line('x', 'y', source = s2_source_pred, color = 'red',legend = pred_title)
s2.line('x', 'y', source = s2_source_resp, color = 'blue',legend = resp_title)
s2.yaxis.axis_label = units
s2.xaxis.axis_label = 'Time'
# Set up slider
offset = Slider(title="Predictor leads by", value=0, start=-30, end=30, step=1)
def update_data(attrname, old, new):
# Get the new slider value
lag = offset.value
# Generate the new dataframe
df = pd.DataFrame()
if lag > 0:
df['time'] = df_original['time'][lag:].values
df['pred'] = df_original['pred'][:-lag].values
df['resp'] = df_original['resp'][lag:].values
elif lag == 0:
df['time'] = df_original['time'].values
df['pred'] = df_original['pred'].values
df['resp'] = df_original['resp'].values
else:
df['time'] = df_original['time'][:lag].values
df['pred'] = df_original['pred'][-lag:].values
df['resp'] = df_original['resp'][:lag].values
if regression:
#Do linear regression for this lag
alpha, beta, r2, r2_position, r2_text = linear_regression(df, x_plot)
#Line of best fit for this lag
y_plot = alpha + beta*x_plot
#Update the line of best fit
line_source.data = dict(x=x_plot, y=y_plot)
#Update the r2 text annotation
text_source.data = dict(x=[r2_position[0]], y=[r2_position[1]], text = [r2_text])
#Update the scatter plot data
s1_source.data = dict(x=df['pred'], y=df['resp'])
#Update the predictor time series
s2_source_pred.data = dict(x=df['time'],y=df['pred'])
#Update the response time series
s2_source_resp.data = dict(x=df['time'],y=df['resp'])
#Make changes as the slider is changed
offset.on_change('value', update_data)
# Set up layouts and add to document
inputs = widgetbox(offset) #Widgetbox only has a slider
curdoc().add_root(gridplot([[s1,inputs],[s2,None]]))#Create the subplot grid
curdoc().title = "Lagged" #Title in the web browser