-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboost.py
881 lines (762 loc) · 27.5 KB
/
boost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
# pylint: disable=missing-docstring,missing-module-docstring,missing-class-docstring,missing-function-docstring
# Copyright (C) 2020 Aaron Friesen <maugrift@maugrift.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# TODO
# Runtime configuration and persistence
# Choose ruleset via Discord and CLI arguments
# Save/load game state to/from file
# Track player stats on Discord
# Show information about previous move
# Location of previously moved piece before move
# Location of captured pieces
# Full rules compliance
# Skip player's turn if they have no possible moves
# Prevent moves that would lead to a previous board state
# AI
# Static evaluation score based on piece counts
# Iterate over all possible moves and choose the one with maximum score
# Maintainability
# Debug powers (ignore movement rules)
# Unit tests (unittest package or just a test() method)
# Optional logging
# Documentation
# Better error messages
# Docstrings for all functions/classes
# Performance
# Cache piece counts
# Cache defeated players
# Cache winner?
# New piece types
# Give each piece properties rather than hardcoding based on type
# Walls (for variants)
# New playable pieces (for variants)
# Arbitrary game sizes
# >9 players
# >9 ranks
# >26 files
# Symmetric placement of dragons for >2 players
# Refactor to support any arbitrary rulesets (e.g. chess)
# Better icon?
import sys
import math
import random
import os
from enum import Enum
COLOR = False
try:
from termcolor import colored
except ImportError:
COLOR = False
SOLO_BOARD = """
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
P1 P1 P1 P1 . P1 P1 P1 P1
"""
P2_BOARD = """
P2 P2 P2 P2 . P2 P2 P2 P2
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
P1 P1 P1 P1 . P1 P1 P1 P1
"""
P2_BOARD_MINI = """
. . . P2 P2 P2 P2
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
P1 P1 P1 P1 . . .
"""
P2_BOARD_QUICKSTART = """
. . P2 . . . P2 . .
. P2 T2 P2 . P2 T2 P2 .
. . P2 . . . P2 . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . P1 . . . P1 . .
. P1 T1 P1 . P1 T1 P1 .
. . P1 . . . P1 . .
"""
P3_BOARD = """
P2 P2 P2 P2 . P3 P3 P3 P3
. . . . . . . . .
P2 . . . . . . . P3
P2 . . . . . . . P3
P2 . . . . . . . P3
P2 . . . . . . . P3
. . . . . . . . .
. . . . . . . . .
P1 P1 P1 P1 . P1 P1 P1 P1
"""
P4_BOARD = """
P2 P2 P2 P2 . P4 P4 P4 P4
. . . . . . . . .
P2 . . . . . . . P4
P2 . . . . . . . P4
. . . . . . . . .
P1 . . . . . . . P3
P1 . . . . . . . P3
. . . . . . . . .
P1 P1 P1 P1 . P3 P3 P3 P3
"""
P4_BOARD_MINIMAL = """
P2 . . . . P3 P3 P3 P3
P2 . . . . . . . .
P2 . . . . . . . .
P2 . . . . . . . .
. . . . . . . . .
. . . . . . . . P4
. . . . . . . . P4
. . . . . . . . P4
P1 P1 P1 P1 . . . . P4
"""
# P1 can win a tower victory with d1c2
DEBUG_BOARD_TOWER = """
. D0 . .
D0 T1 . P1
. D0 . D0
"""
# P1 can win a capture victory with a4b3
DEBUG_BOARD_CAPTURE_TOWER = """
P1 T1
. .
P2 T2
. D0
"""
# P1 can win a capture victory with a3c3
DEBUG_BOARD_CAPTURE_PAWN = """
P1 . . .
P2 P2 P2 P2
P1 P1 P1 P1
"""
# P1 can defeat P2, P3, and P4 with b5c3
# The captures should be processed before P2/P3/P4 win a tower victory!
DEBUG_BOARD_TRIPLE_DEFEAT = """
P1 D0 . T1 P3
P2 D0 . D0 P4
D0 T2 . T3 D0
. D0 T4 D0 .
. . D0 . .
"""
# P1 can defeat P2 with a4b3
# Turn order should skip to P3
DEBUG_BOARD_DEFEATED = """
P1 T1 P3
. . .
P2 T2 .
. D0 T3
"""
class Ruleset:
def __init__(self, board_string, width, height, players, dragons):
assert board_string
assert width >= 1
assert height >= 1
assert players >= 1
assert dragons >= 0
self.board_string = board_string
self.width = width
self.height = height
self.players = players
self.dragons = dragons
@property
def owners(self):
return self.players + 1
def create_board(self):
return Board(self.width, self.height, self.board_string, self.dragons)
def create_game(self):
return Game(self.create_board(), self.players)
class Rulesets(Enum):
P2 = Ruleset(P2_BOARD, 9, 9, 2, 7)
SOLO = Ruleset(SOLO_BOARD, 9, 9, 1, 7)
P2_DRAGONLESS = Ruleset(P2_BOARD, 9, 9, 2, 0)
P2_MINI = Ruleset(P2_BOARD_MINI, 7, 7, 2, 7)
P2_MINI_DRAGONLESS = Ruleset(P2_BOARD_MINI, 7, 7, 2, 0)
P2_QUICKSTART = Ruleset(P2_BOARD_QUICKSTART, 9, 9, 2, 7)
P3 = Ruleset(P3_BOARD, 9, 9, 3, 7)
P4 = Ruleset(P4_BOARD, 9, 9, 4, 7)
P4_MINIMAL = Ruleset(P4_BOARD_MINIMAL, 9, 9, 4, 7)
DEBUG_TOWER = Ruleset(DEBUG_BOARD_TOWER, 4, 3, 1, 0)
DEBUG_CAPTURE_TOWER = Ruleset(DEBUG_BOARD_CAPTURE_TOWER, 2, 4, 2, 0)
DEBUG_CAPTURE_PAWN = Ruleset(DEBUG_BOARD_CAPTURE_PAWN, 4, 3, 2, 0)
DEBUG_TRIPLE_DEFEAT = Ruleset(DEBUG_BOARD_TRIPLE_DEFEAT, 5, 5, 4, 0)
DEBUG_DEFEATED = Ruleset(DEBUG_BOARD_DEFEATED, 3, 4, 3, 0)
DEFAULT_RULESET = Rulesets.P2.value
EMPTY_CELL_SHORT = '.'
EMPTY_CELL_LONG = '. '
DRAGON_OWNER = 0
OWNER_COLORS = ['green', 'red', 'blue', 'yellow', 'magenta', 'cyan', 'white']
MAX_TOWERS = 2
KNIGHTS_PER_TOWER = 1
DRAGONS = 7
MIN_PIECES = 4
TOWER_VICTORY = True
CLEAR = True
def distance(row1, col1, row2, col2):
# Manhattan distance
return abs(row2 - row1) + abs(col2 - col1)
def cell_distance(cell1, cell2):
return distance(cell1.row, cell1.col, cell2.row, cell2.col)
# A generic list-based priority queue implementation
class PriorityQueue:
def __init__(self):
self.queue = []
def __str__(self):
return ' '.join([str(i) for i in self.queue])
@property
def is_empty(self):
return len(self.queue) == 0
def insert(self, data):
self.queue.append(data)
def delete(self):
if self.is_empty:
raise IndexError
best = 0
for i in range(len(self.queue)):
if self.queue[i] < self.queue[best]:
best = i
item = self.queue[best]
del self.queue[best]
return item
class Cell:
def __init__(self, row, col):
self.row = row
self.col = col
def __eq__(self, other):
if isinstance(other, Cell):
return self.row == other.row and self.col == other.col
return False
@property
def neighbors(self):
return [Cell(self.row - 1, self.col),
Cell(self.row + 1, self.col),
Cell(self.row, self.col - 1),
Cell(self.row, self.col + 1)]
class PieceType:
def __init__(self, name, symbol):
self.name = name
self.symbol = symbol
class PieceTypes(Enum):
DRAGON = PieceType('Dragon', 'D')
PAWN = PieceType('Pawn', 'P')
KNIGHT = PieceType('Knight', 'K')
TOWER = PieceType('Tower', 'T')
class Piece:
def __init__(self, owner, piece_type):
# assert isinstance(owner, int)
# assert owner >= 0
# assert piece_type in PieceTypes
# assert (owner == DRAGON_OWNER) == (piece_type == PieceTypes.DRAGON)
self.owner = owner
self.piece_type = piece_type
def __str__(self):
return str(self.piece_type.value.symbol) + str(self.owner)
def __eq__(self, other):
if isinstance(other, Piece):
return self.owner == other.owner and self.piece_type == other.piece_type
return False
def __hash__(self):
return hash((self.owner, self.piece_type))
@property
def name(self):
return self.piece_type.value.name
@property
def symbol(self):
return self.piece_type.value.symbol
@property
def color(self):
return OWNER_COLORS[self.owner]
@property
def valid(self):
return self.owner >= 0 and\
self.piece_type in PieceTypes\
and (self.owner == DRAGON_OWNER) == (self.piece_type == PieceTypes.DRAGON)
@staticmethod
def parse(string):
for piece_type in PieceTypes:
if piece_type.value.symbol == string[0]:
return Piece(int(string[1]), piece_type)
return None
class Move:
def __init__(self, start, end=None):
self.start = start
self.end = end if end else start
def __eq__(self, other):
if isinstance(other, Move):
return self.start == other.start and self.end == other.end
return False
@property
def distance(self):
return cell_distance(self.start, self.end)
class PathVertex:
def __init__(self, cell, path, heuristic):
self.cell = cell
self.path = path
self.heuristic = heuristic
def __lt__(self, other):
return self.heuristic < other.heuristic
def __gt__(self, other):
return other.__lt__(self)
def __eq__(self, other):
return self.heuristic == other.heuristic
class Board:
def __init__(self, width, height, string='', dragons=0):
self.board = Board.empty(width, height)
self.load(string)
self.place_dragons(dragons)
self.forfeited = set()
@property
def width(self):
return len(self.board[0])
@property
def height(self):
return len(self.board)
@staticmethod
def empty(width, height):
return [[None for col in range(width)] for row in range(height)]
def __str__(self):
string = ''
for row in range(len(self.board)):
for col in range(len(self.board[row])):
if self.board[row][col]:
string += str(self.board[row][col])
else:
string += EMPTY_CELL_LONG
string += ' '
string += '\n'
# Slice out trailing newline
return string[:-1]
@property
def cell_width(self):
return 2 if COLOR or self.owners <= 3 else 3
@property
def pretty(self):
file_labels = ' '
for col in range(len(self.board[0])):
file_labels += f'{chr(col + 65)}' + (self.cell_width - 1) * ' '
string = file_labels + '\n'
horizontal_border = '─' * (self.cell_width * len(self.board[0]) - 1)
string += f" ┌{horizontal_border}┐\n"
for row in range(len(self.board)):
row_string = f'{len(self.board) - row}'
string += row_string + '│'
for col in range(len(self.board[row])):
piece = self.board[row][col]
if piece:
if COLOR:
string += colored(piece.symbol.upper(), piece.color)
else:
string += self.format_piece(piece)
else:
if self.cell_width == 2:
string += EMPTY_CELL_SHORT
else:
string += EMPTY_CELL_LONG
if col < len(self.board[row]) - 1:
string += ' '
else:
string += '│'
string += row_string + '\n'
string += f" └{horizontal_border}┘\n"
string += file_labels
return string
@property
def cells(self):
cells = []
for row in range(len(self.board)):
for col in range(len(self.board[row])):
cells.append(Cell(row, col))
return cells
@property
def tower_cells(self):
cells = []
for row in range(1, len(self.board) - 1):
for col in range(1, len(self.board[row]) - 1):
cells.append(Cell(row, col))
return cells
@property
def pieces(self):
pieces = {}
for cell in self.cells:
piece = self.get_piece(cell)
if piece:
if piece in pieces:
pieces[piece] += 1
else:
pieces[piece] = 1
return pieces
def parse_cell(self, string):
row_string = string[0]
col_string = string[1]
row = self.height - int(col_string)
col = ord(row_string.upper()) - 65
return Cell(row, col)
def format_cell(self, cell):
return f'{chr(cell.col + 65)}{str(self.height - cell.row)}'
def parse_move(self, string):
start = self.parse_cell(string[0:2])
end = start
if len(string) == 4:
end = self.parse_cell(string[2:4])
return Move(start, end)
def format_move(self, move):
return self.format_cell(move.start) + self.format_cell(move.end)
def format_piece(self, piece):
if self.owners > 3:
return str(piece)
symbol = piece.piece_type.value.symbol
return symbol.lower() if piece.owner == 1 else symbol.upper()
def load(self, string):
row, col = 0, 0
self.owners = 0
for line in string.splitlines():
if row < len(self.board):
for (piece_type_string, owner_string) in zip(line[0::], line[1::]):
if col < len(self.board[row]):
piece_string = piece_type_string + owner_string
piece = Piece.parse(piece_string)
self.board[row][col] = piece
if piece:
if piece.owner > self.owners:
self.owners = piece.owner
if piece or piece_string == EMPTY_CELL_LONG:
col += 1
# Ignore blank lines
if col > 0:
row += 1
col = 0
self.owners += 1
def place_dragons(self, dragons):
assert dragons >= 0
if dragons == 0:
return
middle_row = math.floor(self.height / 2)
middle_col = math.floor(self.width / 2)
available_cells = []
for row in range(middle_row):
col_range = middle_col - 1 if row == middle_row else self.width
for col in range(col_range):
if not self.board[row][col]:
available_cells.append(Cell(row, col))
remaining_dragons = dragons
# To place an odd number of dragons, we have to place one in the middle,
# since it's the only non-mirrored cell
dragon = Piece(DRAGON_OWNER, PieceTypes.DRAGON)
if dragons % 2 != 0:
if self.board[middle_row][middle_col]:
raise ValueError(\
'Cannot place an odd number of dragons on this board' +\
'(center must be unoccupied)')
self.board[middle_row][middle_col] = dragon
remaining_dragons -= 1
while remaining_dragons > 0:
cell = random.choice(available_cells)
available_cells.remove(cell)
mirror_row = self.height - cell.row - 1
mirror_col = self.width - cell.col - 1
if not self.board[mirror_row][mirror_col]:
self.set_piece(cell, dragon)
self.board[mirror_row][mirror_col] = dragon
remaining_dragons -= 2
def in_bounds(self, cell):
assert cell
return cell.row >= 0 and\
cell.row < len(self.board) and\
cell.col >= 0 and\
cell.col < len(self.board[cell.row])
def get_piece(self, cell):
if not self.in_bounds(cell):
return None
return self.board[cell.row][cell.col]
def set_piece(self, cell, piece):
if self.in_bounds(cell):
self.board[cell.row][cell.col] = piece
def get_boost(self, cell):
boost = 1
for neighbor in cell.neighbors:
if self.get_piece(neighbor):
boost += 1
return boost
def path_exists(self, move):
# A* with Manhattan distance heuristic (cell_distance)
boost = self.get_boost(move.start)
worklist = PriorityQueue()
worklist.insert(PathVertex(move.start, [], cell_distance(move.start, move.end)))
while not worklist.is_empty:
workitem = worklist.delete()
if len(workitem.path) > boost:
return False
if len(workitem.path) == boost and workitem.cell == move.end:
return True
for neighbor in workitem.cell.neighbors:
piece = self.get_piece(neighbor)
if (not piece or neighbor == move.end) and not neighbor in workitem.path:
worklist.insert(PathVertex(neighbor,\
workitem.path + [neighbor],\
len(workitem.path) + 1 + cell_distance(neighbor, move.end)))
return False
def can_move_dragon(self, cell, owner):
assert owner != DRAGON_OWNER
assert self.get_piece(cell).piece_type == PieceTypes.DRAGON
for neighbor in cell.neighbors:
neighbor_piece = self.get_piece(neighbor)
if neighbor_piece and neighbor_piece.owner == owner:
return True
return False
def can_build_tower(self, cell, owner):
if self.get_piece(cell):
return False
for neighbor in cell.neighbors:
neighbor_piece = self.get_piece(neighbor)
if not neighbor_piece or neighbor_piece.owner != owner:
return False
owner_towers = self.pieces.get(Piece(owner, PieceTypes.TOWER), 0)
return owner_towers < MAX_TOWERS
def can_promote_knight(self, cell, owner):
piece = self.get_piece(cell)
if not piece or piece.owner != owner or piece.piece_type != PieceTypes.PAWN:
return False
pieces = self.pieces
knight = Piece(owner, PieceTypes.KNIGHT)
tower = Piece(owner, PieceTypes.TOWER)
if knight in pieces and\
tower in pieces\
and pieces[knight] >= pieces[tower] * KNIGHTS_PER_TOWER:
return False
for neighbor in cell.neighbors:
neighbor_piece = self.get_piece(neighbor)
if neighbor_piece and\
neighbor_piece.owner == owner and\
neighbor_piece.piece_type == PieceTypes.TOWER:
return True
return False
def get_move_error(self, move, owner):
piece = self.get_piece(move.start)
destination = self.get_piece(move.end)
boost = self.get_boost(move.start)
error = ''
if move.start == move.end:
if self.can_build_tower(move.start, owner):
return ''
if self.can_promote_knight(move.start, owner):
return ''
return 'You cannot build a tower here nor promote a pawn to a knight here.'
if not piece:
error = f'There is no piece at {self.format_cell(move.start)} to move.'
elif piece.piece_type == PieceTypes.DRAGON and\
not self.can_move_dragon(move.start, owner):
error = f'To move the {piece.name} at {self.format_cell(move.start)}, ' +\
'you must have an adjacent piece.'
elif piece.owner != owner and piece.owner != DRAGON_OWNER:
error = f'You are not the owner of the {piece.name} at {self.format_cell(move.start)}.'
elif piece.piece_type == PieceTypes.TOWER:
error = 'Towers cannot move.'
elif not self.path_exists(move):
error = f'You must move this piece exactly {boost} cell(s).'
elif not self.in_bounds(move.end):
error = f'{self.format_cell(move.end)} is out of bounds.'
elif destination and piece.piece_type != PieceTypes.KNIGHT:
error = f'A {piece.name} cannot capture pieces directly.'
elif destination and destination.owner == owner:
error = 'You cannot capture your own piece.'
elif destination and destination.piece_type == PieceTypes.DRAGON:
error = 'Dragons cannot be captured.'
return error
def is_valid(self, move, owner):
return not self.get_move_error(move, owner)
def capture(self, cell, owner):
# Processes captures made by the piece moved to the given cell by the given owner
piece = self.get_piece(cell)
assert piece
assert piece.piece_type == PieceTypes.PAWN or piece.piece_type == PieceTypes.DRAGON
captures = 0
for neighbor in cell.neighbors:
neighbor_piece = self.get_piece(neighbor)
if neighbor_piece\
and neighbor_piece.owner != owner\
and neighbor_piece.owner != DRAGON_OWNER:
flank = Cell(neighbor.row + (neighbor.row - cell.row),\
neighbor.col + (neighbor.col - cell.col))
flanking_piece = self.get_piece(flank)
if flanking_piece and\
(flanking_piece.owner == owner or\
flanking_piece.owner == DRAGON_OWNER):
self.set_piece(neighbor, None)
captures += 1
return captures
@property
def defeated(self):
defeated = set()
pieces = self.pieces
for owner in range(self.owners):
if owner != DRAGON_OWNER:
owner_total = 0
for piece_type in PieceTypes:
count = pieces.get(Piece(owner, piece_type))
if count:
owner_total += count
owner_towers = pieces.get(Piece(owner, PieceTypes.TOWER))
if (owner_towers and owner_total == owner_towers) or\
(not owner_towers and owner_total < MIN_PIECES):
defeated.add(owner)
return defeated | self.forfeited
@property
def capture_winner(self):
defeated = self.defeated
# 2 corresponds to the dragon owner + one remaining player
if self.owners - len(defeated) == 2:
for candidate in range(self.owners):
if candidate != DRAGON_OWNER and candidate not in defeated:
return candidate
return None
@property
def tower_winner(self):
for cell in self.tower_cells:
tower = self.get_piece(cell)
if tower and tower.piece_type == PieceTypes.TOWER:
dragons = 0
for neighbor in cell.neighbors:
dragon = self.get_piece(neighbor)
if not dragon or dragon.piece_type != PieceTypes.DRAGON:
break
dragons += 1
if dragons == 4:
return tower.owner
return None
def move(self, move, owner):
if move.start == move.end:
piece = self.get_piece(move.start)
if not piece:
# Build tower
self.board[move.start.row][move.start.col] = Piece(owner, PieceTypes.TOWER)
else:
# Promote knight
self.board[move.start.row][move.start.col] = Piece(owner, PieceTypes.KNIGHT)
else:
# Move piece
piece = self.board[move.start.row][move.start.col]
target = self.board[move.end.row][move.end.col]
self.set_piece(move.start, None)
self.set_piece(move.end, piece)
captures = 0
# Check for direct knight capture
if piece.piece_type == PieceTypes.KNIGHT and target:
captures = 1
# Check for pawn or dragon capture
elif piece.piece_type == PieceTypes.PAWN or piece.piece_type == PieceTypes.DRAGON:
captures = self.capture(move.end, owner)
# Check for capture victory if any pieces were captured
if captures > 0:
winner = self.capture_winner
if winner:
return winner
# Check for tower victory if a dragon was moved
# Must be checked after captures in case a player captured a tower by moving a fourth dragon next to it
if TOWER_VICTORY and piece.piece_type == PieceTypes.DRAGON:
winner = self.tower_winner
if winner:
return winner
return None
class Game:
def __init__(self, board, players, turn=1):
self.board = board
self.players = players
self.turn = turn
self.history = [str(board)]
def get_next_turn(self):
return self.turn + 1 if self.turn < self.players else 1
def next_turn(self):
defeated = self.board.defeated
if len(defeated) == self.players:
raise ValueError('Every player in the game is defeated')
self.turn = self.get_next_turn()
while self.turn in defeated:
self.turn = self.get_next_turn()
def get_prev_turn(self):
return self.turn - 1 if self.turn > 1 else self.players
def prev_turn(self):
defeated = self.board.defeated
if len(defeated) == self.players:
raise ValueError('Every player in the game is defeated')
self.turn = self.get_prev_turn()
while self.turn in defeated:
self.turn = self.get_prev_turn()
def get_move_error(self, move):
return self.board.get_move_error(move, self.turn)
def move(self, move):
winner = self.board.move(move, self.turn)
self.next_turn()
self.history.append(str(self.board))
return winner
def undo(self):
if len(self.history) > 1:
self.prev_turn()
self.history.pop()
self.board.load(self.history[-1])
return ''
return 'There are no previous moves to undo.'
def forfeit(self):
self.board.forfeited.add(self.turn)
self.next_turn()
return self.board.capture_winner
def main():
game = DEFAULT_RULESET.create_game()
error = ''
winner = None
while True:
if CLEAR:
os.system('clear')
print(game.board.pretty)
if winner:
print(f'Player {winner} won the game!')
input('Press enter to exit.')
sys.exit(0)
print(error)
error = ''
try:
move_input = input(f"Player {game.turn}'s Move: ")
except KeyboardInterrupt:
# Don't print a traceback on KeyboardInterrupt
print()
sys.exit(0)
if move_input == 'exit':
sys.exit(0)
elif move_input == 'undo':
error = game.undo()
elif move_input == 'forfeit':
winner = game.forfeit()
else:
try:
move = game.board.parse_move(move_input)
except (ValueError, IndexError):
error = 'Bad move format. Moves should be given in chess notation.\n'\
+ 'e.g. "a1b2" to move from A1 to B2.'
else:
error = game.get_move_error(move)
if not error:
winner = game.move(move)
if __name__ == '__main__':
main()