Version 2.2.1
This release fixes bugs found in the codebase and improves the usability and functions of BrainPy.
Bug fixes
- Fix the bug of operator customization in
brainpy.math.XLACustomOp
andbrainpy.math.register_op
. Now, it supports operator customization by using NumPy and Numba interface. For instance,
import brainpy.math as bm
def abs_eval(events, indices, indptr, post_val, values):
return post_val
def con_compute(outs, ins):
post_val = outs
events, indices, indptr, _, values = ins
for i in range(events.size):
if events[i]:
for j in range(indptr[i], indptr[i + 1]):
index = indices[j]
old_value = post_val[index]
post_val[index] = values + old_value
event_sum = bm.XLACustomOp(eval_shape=abs_eval, con_compute=con_compute)
- Fix the bug of
brainpy.tools.DotDict
. Now, it is compatible with the transformations of JAX. For instance,
import brainpy as bp
from jax import vmap
@vmap
def multiple_run(I):
hh = bp.neurons.HH(1)
runner = bp.dyn.DSRunner(hh, inputs=('input', I), numpy_mon_after_run=False)
runner.run(100.)
return runner.mon
mon = multiple_run(bp.math.arange(2, 10, 2))
New features
- Add numpy operators
brainpy.math.mat
,brainpy.math.matrix
,brainpy.math.asmatrix
. - Improve translation rules of brainpylib operators, improve its running speeds.
- Support
DSView
ofDynamicalSystem
instance. Now, it supports defining models with a slice view of a DS instance. For example,
import brainpy as bp
import brainpy.math as bm
class EINet_V2(bp.dyn.Network):
def __init__(self, scale=1.0, method='exp_auto'):
super(EINet_V2, self).__init__()
# network size
num_exc = int(3200 * scale)
num_inh = int(800 * scale)
# neurons
self.N = bp.neurons.LIF(num_exc + num_inh,
V_rest=-60., V_th=-50., V_reset=-60., tau=20., tau_ref=5.,
method=method, V_initializer=bp.initialize.Normal(-55., 2.))
# synapses
we = 0.6 / scale # excitatory synaptic weight (voltage)
wi = 6.7 / scale # inhibitory synaptic weight
self.Esyn = bp.synapses.Exponential(pre=self.N[:num_exc], post=self.N,
conn=bp.connect.FixedProb(0.02),
g_max=we, tau=5.,
output=bp.synouts.COBA(E=0.),
method=method)
self.Isyn = bp.synapses.Exponential(pre=self.N[num_exc:], post=self.N,
conn=bp.connect.FixedProb(0.02),
g_max=wi, tau=10.,
output=bp.synouts.COBA(E=-80.),
method=method)
net = EINet_V2(scale=1., method='exp_auto')
# simulation
runner = bp.dyn.DSRunner(
net,
monitors={'spikes': net.N.spike},
inputs=[(net.N.input, 20.)]
)
runner.run(100.)
# visualization
bp.visualize.raster_plot(runner.mon.ts, runner.mon['spikes'], show=True)