-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
118 lines (95 loc) · 5.24 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Useful resources:
# https://www.medien.ifi.lmu.de/lehre/ws2122/gp/
# https://github.com/pyg-team/pytorch_geometric/blob/master/examples/dgcnn_classification.py
#
# Original code:
# https://github.com/WangYueFt/dgcnn/blob/master/tensorflow/models/dgcnn.py
import torch
import torch.nn.functional as F
from torch_geometric.nn import DynamicEdgeConv, MLP, global_max_pool, global_mean_pool
from tNet import tNet
class DGCNN(torch.nn.Module):
def __init__(self, out_channels, k=20, aggr='max'):
super(DGCNN, self).__init__()
act_fun = 'leaky_relu'
act_args = {'negative_slope': 0.2} # Weird, default=0.01
self.conv1 = DynamicEdgeConv(MLP([2*3, 64], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args), k, aggr)
self.conv2 = DynamicEdgeConv(MLP([2*64, 64], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args), k, aggr)
self.conv3 = DynamicEdgeConv(MLP([2*64, 128], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args), k, aggr)
self.conv4 = DynamicEdgeConv(MLP([2*128, 256], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args), k, aggr)
self.mlp1 = MLP([2*256, 1024], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args)
bias_list=[False, True, True]
self.mlp2 = MLP([2*1024, 512, 256, out_channels], bias=bias_list, plain_last=True, act=act_fun, act_kwargs=act_args, dropout=0.5)
def forward(self, data):
pos, batch = data.pos.float(), data.batch
x1 = self.conv1(pos,batch)
x2 = self.conv2(x1, batch)
x3 = self.conv3(x2, batch)
x4 = self.conv4(x3, batch)
out = self.mlp1(torch.cat([x1, x2, x3, x4], dim=1)) # after cat: 1024x(3*64 + 128)
x1 = global_max_pool(out, batch)
x2 = global_mean_pool(out, batch)
out = torch.cat([x1, x2], dim=1)
return self.mlp2(out)
class DGCNN_semseg(torch.nn.Module):
def __init__(self, out_channels, k=20, aggr='max'):
super(DGCNN_semseg, self).__init__()
act_fun = 'leaky_relu'
act_args = {'negative_slope': 0.2} # Weird, default=0.01
self.conv1 = DynamicEdgeConv(MLP([2*9, 64, 64], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args), k, aggr)
self.conv2 = DynamicEdgeConv(MLP([2*64, 64, 64], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args), k, aggr)
self.conv3 = DynamicEdgeConv(MLP([2*64, 64], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args), k, aggr)
self.mlp1 = MLP([3*64, 1024], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args)
dp_list=[0., 0.7, 0.]
self.mlp2 = MLP([3*64 + 1024, 512, 256, out_channels], bias=False, plain_last=True, act=act_fun, act_kwargs=act_args, dropout=dp_list)
def forward(self, data):
batch = data.batch
x = torch.cat([data.pos, data.x], dim=1)
num_points = len(data.y)
#print(x.size())
x1 = self.conv1( x, batch)
x2 = self.conv2(x1, batch)
x3 = self.conv3(x2, batch)
#print(x3.size())
out = torch.cat([x1, x2, x3], dim=1) # after cat: 1024x(3*64 + 128)
#print(out.size())
out = self.mlp1(out)
#print("Na MLP1")
#print(out.size())
out = global_max_pool(out, batch)
#print(out.size())
out = out.repeat_interleave(4096, dim=0) # Hardcoded! Should be better way based on batch info
#print(out.size())
out = torch.cat([out, x1, x2, x3], dim=1)
out = self.mlp2(out)
return out
class DGCNN_pseg(torch.nn.Module):
def __init__(self, out_channels, k=20, part_num=50, aggr='max'):
super(DGCNN_pseg, self).__init__()
act_fun = 'leaky_relu'
act_args = {'negative_slope': 0.2} # Weird, default=0.01
self.tNet = tNet(k=k)
self.conv1 = DynamicEdgeConv(MLP([ 2*3, 64, 64], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args), k, aggr)
self.conv2 = DynamicEdgeConv(MLP([2*64, 64, 64], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args), k, aggr)
self.conv3 = DynamicEdgeConv(MLP([2*64, 64 ], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args), k, aggr)
self.mlp1 = MLP([3*64, 1024], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args)
self.mlp2 = MLP([ 16, 64], bias=False, plain_last=False, act=act_fun, act_kwargs=act_args)
drop_list=[0.6, 0.6, 0, 0]
self.mlp3 = MLP([1024+64 + 3*64, 256, 256, 128, part_num], plain_last=True, act=act_fun, act_kwargs=act_args, dropout=drop_list)
def forward(self, data):
pos, y, batch = data.pos.float(), data.category, data.batch
# Categorical vector
y = F.one_hot(y, num_classes=16).float()
y = self.mlp2(y)
t = self.tNet(pos, batch)
pos = torch.matmul(pos.unsqueeze(1), t)
pos = pos.squeeze()
x1 = self.conv1(pos,batch)
x2 = self.conv2(x1, batch)
x3 = self.conv3(x2, batch)
out = self.mlp1(torch.cat([x1, x2, x3], dim=1))
out = global_max_pool(out, batch)
out = torch.cat([out, y], dim=1)
out = out.repeat_interleave(2048, dim=0) # Hardcoded! Should be better way based on batch info
x = torch.cat((out, x1, x2, x3), dim=1)
return self.mlp3(x)