-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_pnet2.py
77 lines (61 loc) · 2.62 KB
/
model_pnet2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
import torch.nn.functional as F
from torch_geometric.nn import MLP, PointConv, fps, global_max_pool, radius
class SAModuleMSG(torch.nn.Module):
def __init__(self, ratio, r, nsample, nn):
super().__init__()
self.ratio = ratio # For the Furthest Point sampling
self.r_list = r # List of radii
self.nsample = nsample
self.conv = torch.nn.ModuleList()
for i in range(len(self.r_list)):
self.conv.append(PointConv(MLP(nn[i]), add_self_loops=False))
def forward(self, F, pos, batch):
#print("*********")
#print("Feat size: " + str(F.shape if F is not None else 0))
#print("pos size: " + str(pos.shape))
#print("batch size: " + str(batch.shape))
idx = fps(pos, batch, ratio=self.ratio)
x_list = []
for i,r in enumerate(self.r_list):
row, col = radius(pos, pos[idx], r, batch, batch[idx],
max_num_neighbors=self.nsample[i])
edge_index = torch.stack([col, row], dim=0)
F_dst = None if F is None else F[idx]
x = self.conv[i]((F,F_dst), (pos, pos[idx]), edge_index)
#print("na conv size: " + str(x.shape)) # 512*32 x 128
#x = global_max_pool(x, batch[idx])
#print("na max pool size: " + str(x.shape))
x_list.append(x)
out = torch.cat(x_list, dim=1)
pos, batch = pos[idx], batch[idx]
#print("out size: " + str(out.shape))
return out, pos, batch
class GlobalSAModule(torch.nn.Module):
def __init__(self, nn):
super().__init__()
self.nn = nn
def forward(self, x, pos, batch):
x = self.nn(torch.cat([x, pos], dim=1))
x = global_max_pool(x, batch)
return x
class PNet2(torch.nn.Module):
def __init__(self):
super(PNet2, self).__init__()
self.sa1 = SAModuleMSG(0.5, [0.1, 0.2, 0.4], [16, 32, 128],
[[3, 32, 32, 128],
[3, 64, 64, 128],
[3, 64, 96, 128]])
self.sa2 = SAModuleMSG(0.25, [0.2, 0.4, 0.8], [32, 64, 128],
[[3*128+3, 64, 64, 128],
[3*128+3, 128, 128, 256],
[3*128+3, 128, 128, 256]])
self.sa3 = GlobalSAModule(MLP([128+2*256 + 3, 256, 512, 1024]))
self.mlp = MLP([1024, 512, 256, 40], dropout=0.4, plain_last=True)
def forward(self, data):
sa0_out = (data.x, data.pos.float(), data.batch)
sa1_out = self.sa1(*sa0_out)
sa2_out = self.sa2(*sa1_out)
x = self.sa3(*sa2_out)
x = self.mlp(x).log_softmax(dim=-1)
return x