-
Notifications
You must be signed in to change notification settings - Fork 20
/
ccm.c
262 lines (228 loc) · 8.65 KB
/
ccm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/* ccm.c
Counter with CBC-MAC mode, specified by NIST,
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
Copyright (C) 2014 Exegin Technologies Limited
Copyright (C) 2014 Owen Kirby
This file is part of GNU Nettle.
GNU Nettle is free software: you can redistribute it and/or
modify it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version.
or both in parallel, as here.
GNU Nettle is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see http://www.gnu.org/licenses/.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "ccm.h"
#include "ctr.h"
#include "memops.h"
#include "nettle-internal.h"
#include "macros.h"
/*
* The format of the CCM IV (for both CTR and CBC-MAC) is: flags | nonce | count
* flags = 1 octet
* nonce = N octets
* count >= 1 octet
*
* such that:
* sizeof(flags) + sizeof(nonce) + sizeof(count) == 1 block
*/
#define CCM_FLAG_L 0x07
#define CCM_FLAG_M 0x38
#define CCM_FLAG_ADATA 0x40
#define CCM_FLAG_RESERVED 0x80
#define CCM_FLAG_GET_L(_x_) (((_x_) & CCM_FLAG_L) + 1)
#define CCM_FLAG_SET_L(_x_) (((_x_) - 1) & CCM_FLAG_L)
#define CCM_FLAG_SET_M(_x_) ((((_x_) - 2) << 2) & CCM_FLAG_M)
#define CCM_OFFSET_FLAGS 0
#define CCM_OFFSET_NONCE 1
#define CCM_L_SIZE(_nlen_) (CCM_BLOCK_SIZE - CCM_OFFSET_NONCE - (_nlen_))
/*
* The data input to the CBC-MAC: L(a) | adata | padding | plaintext | padding
*
* blength is the length of data that has been added to the CBC-MAC modulus the
* cipher block size. If the value of blength is non-zero then some data has
* been XOR'ed into the CBC-MAC, and we will need to pad the block (XOR with 0),
* and iterate the cipher one more time.
*
* The end of adata is detected implicitly by the first call to the encrypt()
* and decrypt() functions, and will call ccm_pad() to insert the padding if
* necessary. Because of the underlying CTR encryption, the encrypt() and
* decrypt() functions must be called with a multiple of the block size and
* therefore blength should be zero on all but the first call.
*
* Likewise, the end of the plaintext is implicitly determined by the first call
* to the digest() function, which will pad if the final CTR encryption was not
* a multiple of the block size.
*/
static void
ccm_pad(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f)
{
if (ctx->blength) f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
ctx->blength = 0;
}
static void
ccm_build_iv(uint8_t *iv, size_t noncelen, const uint8_t *nonce,
uint8_t flags, size_t count)
{
unsigned int i;
/* Sanity check the nonce length. */
assert(noncelen >= CCM_MIN_NONCE_SIZE);
assert(noncelen <= CCM_MAX_NONCE_SIZE);
/* Generate the IV */
iv[CCM_OFFSET_FLAGS] = flags | CCM_FLAG_SET_L(CCM_L_SIZE(noncelen));
memcpy(&iv[CCM_OFFSET_NONCE], nonce, noncelen);
for (i=(CCM_BLOCK_SIZE - 1); i >= (CCM_OFFSET_NONCE + noncelen); i--) {
iv[i] = count & 0xff;
count >>= 8;
}
/* Ensure the count was not truncated. */
assert(!count);
}
void
ccm_set_nonce(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
size_t length, const uint8_t *nonce,
size_t authlen, size_t msglen, size_t taglen)
{
/* Generate the IV for the CTR and CBC-MAC */
ctx->blength = 0;
ccm_build_iv(ctx->tag.b, length, nonce, CCM_FLAG_SET_M(taglen), msglen);
ccm_build_iv(ctx->ctr.b, length, nonce, 0, 1);
/* If no auth data, encrypt B0 and skip L(a) */
if (!authlen) {
f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
return;
}
/* Encrypt B0 (with the adata flag), and input L(a) to the CBC-MAC. */
ctx->tag.b[CCM_OFFSET_FLAGS] |= CCM_FLAG_ADATA;
f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
#if SIZEOF_SIZE_T > 4
if (authlen >= (0x01ULL << 32)) {
/* Encode L(a) as 0xff || 0xff || <64-bit integer> */
ctx->tag.b[ctx->blength++] ^= 0xff;
ctx->tag.b[ctx->blength++] ^= 0xff;
ctx->tag.b[ctx->blength++] ^= (authlen >> 56) & 0xff;
ctx->tag.b[ctx->blength++] ^= (authlen >> 48) & 0xff;
ctx->tag.b[ctx->blength++] ^= (authlen >> 40) & 0xff;
ctx->tag.b[ctx->blength++] ^= (authlen >> 32) & 0xff;
ctx->tag.b[ctx->blength++] ^= (authlen >> 24) & 0xff;
ctx->tag.b[ctx->blength++] ^= (authlen >> 16) & 0xff;
}
else
#endif
if (authlen >= ((0x1ULL << 16) - (0x1ULL << 8))) {
/* Encode L(a) as 0xff || 0xfe || <32-bit integer> */
ctx->tag.b[ctx->blength++] ^= 0xff;
ctx->tag.b[ctx->blength++] ^= 0xfe;
ctx->tag.b[ctx->blength++] ^= (authlen >> 24) & 0xff;
ctx->tag.b[ctx->blength++] ^= (authlen >> 16) & 0xff;
}
ctx->tag.b[ctx->blength++] ^= (authlen >> 8) & 0xff;
ctx->tag.b[ctx->blength++] ^= (authlen >> 0) & 0xff;
}
void
ccm_update(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
size_t length, const uint8_t *data)
{
const uint8_t *end = data + length;
/* If we don't have enough to fill a block, save the data for later. */
if ((ctx->blength + length) < CCM_BLOCK_SIZE) {
memxor(&ctx->tag.b[ctx->blength], data, length);
ctx->blength += length;
return;
}
/* Process a partially filled block. */
if (ctx->blength) {
memxor(&ctx->tag.b[ctx->blength], data, CCM_BLOCK_SIZE - ctx->blength);
data += (CCM_BLOCK_SIZE - ctx->blength);
f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
}
/* Process full blocks. */
while ((data + CCM_BLOCK_SIZE) < end) {
memxor(ctx->tag.b, data, CCM_BLOCK_SIZE);
f(cipher, CCM_BLOCK_SIZE, ctx->tag.b, ctx->tag.b);
data += CCM_BLOCK_SIZE;
} /* while */
/* Save leftovers for later. */
ctx->blength = (end - data);
if (ctx->blength) memxor(&ctx->tag.b, data, ctx->blength);
}
/*
* Because of the underlying CTR mode encryption, when called multiple times
* the data in intermediate calls must be provided in multiples of the block
* size.
*/
void
ccm_encrypt(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
size_t length, uint8_t *dst, const uint8_t *src)
{
ccm_pad(ctx, cipher, f);
ccm_update(ctx, cipher, f, length, src);
ctr_crypt(cipher, f, CCM_BLOCK_SIZE, ctx->ctr.b, length, dst, src);
}
/*
* Because of the underlying CTR mode decryption, when called multiple times
* the data in intermediate calls must be provided in multiples of the block
* size.
*/
void
ccm_decrypt(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
size_t length, uint8_t *dst, const uint8_t *src)
{
ctr_crypt(cipher, f, CCM_BLOCK_SIZE, ctx->ctr.b, length, dst, src);
ccm_pad(ctx, cipher, f);
ccm_update(ctx, cipher, f, length, dst);
}
void
ccm_digest(struct ccm_ctx *ctx, const void *cipher, nettle_cipher_func *f,
size_t length, uint8_t *digest)
{
int i = CCM_BLOCK_SIZE - CCM_FLAG_GET_L(ctx->ctr.b[CCM_OFFSET_FLAGS]);
assert(length <= CCM_BLOCK_SIZE);
while (i < CCM_BLOCK_SIZE) ctx->ctr.b[i++] = 0;
ccm_pad(ctx, cipher, f);
ctr_crypt(cipher, f, CCM_BLOCK_SIZE, ctx->ctr.b, length, digest, ctx->tag.b);
}
void
ccm_encrypt_message(const void *cipher, nettle_cipher_func *f,
size_t nlength, const uint8_t *nonce,
size_t alength, const uint8_t *adata, size_t tlength,
size_t clength, uint8_t *dst, const uint8_t *src)
{
struct ccm_ctx ctx;
uint8_t *tag = dst + (clength-tlength);
assert(clength >= tlength);
ccm_set_nonce(&ctx, cipher, f, nlength, nonce, alength, clength-tlength, tlength);
ccm_update(&ctx, cipher, f, alength, adata);
ccm_encrypt(&ctx, cipher, f, clength-tlength, dst, src);
ccm_digest(&ctx, cipher, f, tlength, tag);
}
int
ccm_decrypt_message(const void *cipher, nettle_cipher_func *f,
size_t nlength, const uint8_t *nonce,
size_t alength, const uint8_t *adata, size_t tlength,
size_t mlength, uint8_t *dst, const uint8_t *src)
{
struct ccm_ctx ctx;
uint8_t tag[CCM_BLOCK_SIZE];
ccm_set_nonce(&ctx, cipher, f, nlength, nonce, alength, mlength, tlength);
ccm_update(&ctx, cipher, f, alength, adata);
ccm_decrypt(&ctx, cipher, f, mlength, dst, src);
ccm_digest(&ctx, cipher, f, tlength, tag);
return memeql_sec(tag, src + mlength, tlength);
}