-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCustomLLM.py
75 lines (56 loc) · 2.06 KB
/
CustomLLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from typing import Any, List, Mapping, Optional
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
import requests
import json
# A helper function to call from invoke. Sends the HTTP
# query to the ARGO model
def _invoke_model(prompt: str, url: str = None, temperature=0.8, top_p=0.7, model='gpt35', user="") -> str:
if url is None:
url = "https://apps-dev.inside.anl.gov/argoapi/api/v1/resource/chat/"
headers = {
"Content-Type": "application/json"
}
data = {
"user": user,
"model": model,
"system": "You are a helpful operations assistant AI named Argo. You specialize in supporting \
the personnel, scientists, and facility users at Argonne National Laboratory.",
"prompt": [prompt],
"stop": [],
"temperature": temperature,
"top_p": top_p
}
data_json = json.dumps(data)
response = requests.post(url, headers=headers, data=data_json)
if response.status_code == 200:
print(response.json())
else:
print(f"Request failed with status code: {response.status_code}")
print(response.text)
return response.text
# The ARGO_LLM class. Uses the _invoke_model helper function.
# It implements the _call function.
class ARGO_LLM(LLM):
n: int = 1
@property
def _llm_type(self) -> str:
return "custom"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
if stop is not None:
raise ValueError("stop kwargs are not permitted.")
response = _invoke_model("What are some common flaviviruses?")
return response
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {"n": self.n}
@property
def _generations(self):
return