- Changes to
varimp()
arguments.- Add argument
sort
. - Extend argument
scale
to vectors of logical.
- Add argument
- Changes to model-based variable importance.
- Fix unused argument error from
CForestModel
. - Use
drop1()
to compute model term-specific p-values forCoxModel
,POLRModel
, andSurvRegModel
as is done forGLMModel
andLMModel
.
- Fix unused argument error from
- Changes to
VariableImportance
class.- Add slots
method
andmetric
to store the computational method ("permute"
or"model"
) and the performance metric used for computations. - Add
update()
method to add the new slots to objects created with previous versions of the package.
- Add slots
- Deprecate
type = "default"
option inpredict()
and replace it withtype = "raw"
. - Fix unimplemented type 'list' in 'listgreater' error from
SelectedInput.recipe()
.
- Compatibility updates for parsnip.
- Enable resampling by a grouping variable with
BootControl
,OOBControl
, andSplitControl
. - Enable resampling by a stratification variable with
SplitControl
. - Require R 4.1.0 or later.
- Add backward compatibility for older
MLModel
objects without ana.rm
slot. - Fix CRAN check warning: S3 generic/method consistency.
- Update
role_binom()
,role_case()
, androle_surv()
to remove the requirement that their variables be present innewdata
supplied topredict()
.
- Compatibility updates for ggplot2, Matrix, and recipes package dependencies.
- Add argument
na.rm
toMLModel()
for construction of a model that automatically removes all cases with missing values from model fitting and prediction, none, or only those whose missing values are in the response variable. Set thena.rm
values in suppliedMLModels
to automatically remove cases with missing values if not supported by their model fitting and prediction functions. - Add argument
prob.model
toSVMModel()
. - Add argument
verbose
tofit()
andpredict()
. - Fix
Error in as.data.frame(x) : object 'x' not found
issue when fitting aBARTMachineModel
that started occurring withbartMachine
package version 1.2.7. - Remove expired deprecations of
ModeledInput
andrpp()
. - Internal changes
- Add slot
na.rm
toMLModel
.
- Add slot
- Add argument
method
tor2()
for calculation of Pearson or Spearman correlation. - Add
predict()
S4 method forMLModelFit
. - Export
MLModelFunction()
. - Export
as.MLInput()
methods forMLModelFit
andModelSpecification
. - Export
as.MLModel()
method forModelSpecification
. - Improve recursive feature elimination of
SelectedInput
terms. - Improve speed of
StackedModel
andSuperModel
. - Internal changes
- Add
.MachineShop
list attribute toMLModelFit
. - Move field
mlmodel
inMLModelFit
tomodel
in.MachineShop
. - Move slot
input
inMLModel
to.MachineShop
. - Pass
.MachineShop
to thepredict
andvarimp
slot functions ofMLModel
.
- Add
- Fix
TypeError
independence()
with numeric dummy variables from recipes. - Prep
ModelRecipe
withretain = TRUE
for recipe steps that are skipped, for example, when test datasets are created. - Add generalized area under performance curves to
auc()
,pr_auc()
, androc_auc()
for multiclass factor responses.
- Add argument
select
torfe()
. - Fix object
perf_stats
not found inoptim()
.
- Add argument
conf
toset_optim_bayes()
. - Enable global grid expansion and tuning of
StackedModel
andSuperModel
inModelSpecification()
.
- Fixes
- Enable prediction with survival times of 0.
- Implement class
SelectedModelSpecification
. - Internal changes
- Deprecate classes
ModeledInput
,ModeledFrame
, andModeledRecipe
. - Remove unused class
TunedModeledRecipe
.
- Deprecate classes
- Expire deprecations
- Remove argument
fixed
fromTunedModel()
. - Remove
Grid()
.
- Remove argument
- Rename
rpp()
toppr()
. - Replace
ModeledInput()
withModelSpecification()
. - Require R >= 4.0.0.
- Use Olden algorithm for
NNetModel
model-specific variable importance.
- Fixes
SurvRegModelFit
summary()
error- update number of folds recorded in
CVControl
when stratification or grouping size leads to construction of fewer than requested folds for cross-validation resampling
- Add argument
.type
with options"glance"
and"tidy"
tosummary.MLModelFit()
. - Add case components data (stratification and grouping variables) to
print.Resample()
. - Add class and methods for
ModelSpecification
. - Add training parameters set functions
set_monitor()
: monitoring of resampling and optimizationset_optim_bayes()
: Bayesian optimization with a Gaussian process modelset_optim_bfgs()
: low-memory quasi-Newton BFGS optimizationset_optim_grid()
: exhaustive and random grid searchesset_optim_method()
: user-defined optimization functionsset_optim_pso()
: particle swarm optimizationset_optim_sann()
: simulated annealing
- Add
performance()
method forMLModel
to replicate the previous behavior ofsummary.MLModel()
. - Add
performance()
,plot()
, andsummary()
methods forTrainingStep
. - Add support for unordered plots of
Resample
performances. - Changes to argument
type
ofpredict()
.- Add option
"default"
for model-specific default predictions. - Add option
"numeric"
for numeric predictions. - Change option
"prob"
to be for probabilities between 0 and 1.
- Add option
- Change
confusion()
default behavior to convert factor probabilities to levels. - Rename argument
control
toobject
in set functions. - Rename argument
f
tofun
inroc_index()
. - Return a
ListOf
training step summaries fromsummary.MLModel()
. - Return a
TrainingStep
object fromrfe()
. - Support tibble-convertible objects as arguments to
expand_params()
. - Internal changes
- Add class
EnsembleModel
. - Add classes
MLOptimization
,GridSearch
,NullOptimization
,RandomGridSearch
, andSequentialOptimization
. - Add class
NullControl
. - Add slot
control
toPerformanceCurve
. - Add slot
method
toTrainingStep
. - Add slot
optim
toTrainingParams
. - Add slot
params
toMLInput
. - Inherit class
SelectedModel
fromEnsembleModel
. - Inherit class
StackedModel
fromEnsembleModel
. - Inherit class
SuperModel
fromStackedModel
. - Rename slot
case_comps
tovars
inResample
. - Rename slot
grid
tolog
inTrainingStep
.
- Add class
- Fixes
- error predicting single factor response in
GLMModel
- 'size(x@performance, 3)' error in
print.TrainingStep()
- 'Unmatched tuning parameters' error in
TunedModel()
- error predicting single factor response in
- Fix 'data' argument of wrong type error in
terms.formula()
. - Require >= 3.1.0 version of cli package.
- Add argument
distr
andmethod
todependence()
. - Add function
ParsnipModel()
for model specifications (model_spec
) from the parsnip package. - Add function
rfe()
for recursive feature elimination. - Add method
as.MLModel()
formodel_spec
andModeledInput
. - Add support for any model specification whose object has an
as.MLModel()
method. - Add support for cross-validation with case groups.
- Add support for names in argument
metric
ofauc()
. - Change argument
method
default from"model"
to"permute"
invarimp()
. - Change class
ModelFrame
to an S4 class; generally requires explicit conversion to a data frame withas.data.frame()
inMLModel
fit
andpredict
functions. - Change progress bar display from elapsed to estimated completion time.
- Changes to global settings
- Rename
stat.Trained
tostat.TrainingParams
. - Remove
stats.VarImp
.
- Rename
- Changes to internal classes
- Add class
ParsnipModel
. - Add class
SurvTimes
. - Add class
TrainingParams
. - Add class union
Grid
. - Add class union
Params
. - Add column
name
,selected
, andmetrics
to slotgrid
ofTrainingStep
class. - Add slot
grid
toTunedInput
. - Add slot
id
toMLInput
andMLModel
classes. - Add slot
id
andname
toTrainingStep
class. - Add slot
models
toSelectedModel
. - Remove slot
name
fromMLControl
classes. - Remove slot
selected
,values
, andmetric
fromTrainingStep
class. - Remove slot
shift
fromVariableImportance
class. - Rename class
Grid
toTuningGrid
. - Rename class
Resamples
toResample
. - Rename class
TrainStep
toTrainingStep
. - Rename class
VarImp
toVariableImportance
. - Rename classes of
MLControl
.MLBootControl
→BootControl
MLBootOptimismControl
→BootOptimismControl
MLCVControl
→CVControl
MLCVOptimismControl
→CVOptimismControl
MLOOBControl
→OOBControl
MLSplitControl
→SplitControl
MLTrainControl
→TrainControl
- Rename column
Input
andModel
toparams
in slotgrid
ofTrainingStep
class. - Rename column
Resample
toIteration
inResample
class - Rename slot
x
toinput
inMLModel
class.
- Add class
- Changes to
XGBModel
- Change argument default for
nrounds
from 1 to 100. - Rearrange constructor arguments.
- Reduce number of tuning grid parameters
- Include
nrounds
andmax_depth
in automated grids forXGBDARTModel
andXGBTreeModel
. - Include
nrounds
,lambda
, andalpha
in automated grid forXGBLinearModel
.
- Include
- Compute survival probabilities for
survival:aft
prediction. - Change default survival objective from
survival:cox
tosurvival:aft
.
- Change argument default for
- Format and condense printout of objects.
- Include all computed performance metrics in
TrainingStep
objects and output. - Remove shift from variable importance scaling in
varimp()
. - Rename and redefine dispatch (first) arguments in functions.
model
→object
inTunedModel()
x
→object
inexpand_model()
x
→formula
/input
/model
inexpand_modelgrid()
,fit()
,ModelFrame()
,resample()
,rfe()
methodsx
→formula
/object
/model
inModeledInput()
methodsx
→object
inParameterGrid()
methodsx
→control
inset_monitor()
,set_predict()
,set_strata()
x
→object
inTunedInput()
- Rename function
Grid()
toTuningGrid()
. - Reorder optional arguments in
ModelFrame()
. - Save model constructor arguments as the list elements in
MLModel
params
slots.
- Add argument
na.rm
todependence()
. - Add global setting
stats.VarImp
for summary statistics to compute on permutation-based variable importance. - Add permutation-based variable importance to
varimp()
. - Sort variable importance by first column only if not scaled.
- Correct the estimated variances for cross-validation estimators of mean performance difference in
t.test.PerformanceDiff()
. - Rename argument
metric
totype
invarimp()
functions forBartMachineModel
,C50Model
,EarthModel
,RFSRCModel
, andXGBModel
. - Set argument
type
default to"nsubsets"
inEarthModel
varimp()
. - Expand case weighted metrics support.
- Fix weights used in survival event-specific metrics.
- Use weights for
cross_entropy()
numeric
method. - Use weights for predicted survival probabilities.
- Fix error with argument
f
inroc_index()
Surv
method.
- Add slot
weights
toMLModel
classes. - Allow case weights in
LMModel
for all response types. - Exclude infinite values from calculation of
breaks
incalibration()
. - Fix invalid
max = Inf
arguments toprint.default()
. - Add support for case weights in performance metrics and curves.
- Evaluate
ModelFrame()
argumentsstrata
andweights
indata
environment. - Fix issue introduced in package version 2.9.0 of recipe case weights not being used in model fitting.
- Add column
Weight
of case weights toResamples
data frame. - Rename
values
column toget_values
inMLModel
gridinfo
slot. - Move global settings
resample_progress
andresample_verbose
toset_monitor()
argumentsprogress
andverbose
. - Move
MLControl()
argumentsstrata_breaks
,strata_nunique
,strata_prop
, andstrata_size
toset_strata()
argumentsbreaks
,nunique
,prop
, andsize
. - Move
MLControl()
argumentstimes
,distr
, andmethod
toset_predict()
. - Export
%>%
operator. - Return case stratification values in the 'strata' slot of
Resamples
objects.
- Rename tibble column
regular
todefault
inMLModel
gridinfo slot. - Redefine
size
andrandom
arguments ofParameterGrid()
to match those ofGrid()
. - Revise selection of character values in model grids.
- Select
coeflearn
values in their defined order instead of at random inAdaBoostModel
. - Select
kernels
values in their defined order instead of at random inKNNModel
. - Add survival
splitrule
methods inRangerModel
. - Select
splitrule
values in their defined order instead of at random inRangerModel
.
- Select
- Revise global settings names.
- Rename
max.print
toprint_max
. - Rename
progress.resample
toresample_progress
. - Rename
stat.train
tostat.Trained
. - Rename
dist.Surv
todistr.SurvMeans
. - Rename
dist.SurvProbs
todistr.SurvProbs
.
- Rename
- Implement customized stratification methods for resampling.
- Stratify survival data by time within event status by default instead of by event status only.
- Add
strata_breaks
,strata_nunique
,strata_prop
andstrata_size
arguments toMLControl()
constructor. - Reduce
strata_breaks
if numeric quantile bins are belowstrata_prop
andstrata_size
. - Pool smallest factor levels below
strata_prop
andstrata_size
iteratively. - Pool smallest adjacent ordered levels below
strata_prop
andstrata_size
iteratively.
- Remove deprecated
length
arguments fromGrid()
andParameterGrid()
. - Drop compatibility with deprecated
gridinfo
functions inMLModel()
. - New and improved survival analysis methods.
- Add support for counting process survival data.
- Use model weights in estimation of predicted baseline survival curves.
- Change censoring curve estimation method from direct to cumulative hazard-based in the
brier()
metric. - Improve computational speed of survival curve estimation.
- Remove
"fleming-harrington"
as a choice for themethod
argument ofpredict()
and for themethod.EmpiricalSurv
global setting, because it is a special case of the existing (default)"efron"
choice and thus not needed. - Add
"rayleigh"
choice for thedistr.Surv
anddistr.SurvProbs
global settings.
- Rename
dist
argument todistr
incalibration()
,MLControl()
,predict()
, andr2()
. - Return survival distribution name with predicted values.
- Add
distr
argument toSurvEvents()
andSurvProbs()
. - Add
SurvMeans
class. - Return predicted mean survival times as
SurvMeans
object. - Default to the distribution used in predicting mean survival times in
calibration()
andr2()
.
- Add
- Rename
"terms"
predictor_encoding to"model.frame"
inMLModel
class. - Pass elliptical arguments in
performance()
response type-specific methods tometrics
supplied as a singleMLMetric
function.
- Replace
get_grid()
withexpand_modelgrid()
. - Fix for truncated grid of lambda values in
GLMNetModel
. - Support package version constraints in
MLModel
.
- Rename
traininfo
slot totrain_steps
inMLModel
classes. - Issue #4: compatibility fix for recipes package change in behavior of the
retain
argument inprep()
.
- Sort randomly sampled grid points.
- Change
fixed
argument defaultNULL
tolist()
inTunedModel()
. - CRAN release.
- Rename
length
argument tosize
inGrid()
andParameterGrid()
. - Add support for named sizes in
ParameterGrid()
. - Revise model tuning grids.
- Replace
grid
slot withgridinfo
inMLModel
classes. - Add support for size vectors in
Grid()
. - Add
get_grid()
function to extract model-defined tuning grids.
- Replace
- Rename
trainbits
slot totraininfo
inMLModel
classes.
- Doc edits: do not test examples requiring suggested packages.
- CRAN release.
- Preprocess data for automated grid construction only when needed.
- Select
RPartModel
cp
grid points fromcptable
according to smallest cross-validation error (mean plus one standard deviation). - CRAN release.
- Export
Performance
diff()
method.
- Implement fast random forest model
RFSRCModel
. - Export
unMLModelFit()
function to revert anMLModelFit
object to its original class.
- Add
options
argument tostep_lincomp()
andstep_sbf()
. - CRAN release.
- Add recipe
step_sbf()
function for variable selection by filtering. - Inherit
step_kmedoids
objects fromstep_sbf
, and refactor methods.- Support user-specified center and scale functions.
- Append prefix to selected variable names.
- Rename
tidy()
columnmedoids
toselected
. - Rename
tidy()
columnnames
toname
. - Set
tidy()
non-selected variable names toNA
.
- Add recipe
step_lincomp()
function for linear components variable reduction. - Inherit
step_kmeans
objects fromstep_lincomp
, and refactor methods.- Support user-specified center and scale functions.
- Rename
tidy()
columnnames
toname
.
- Inherit
step_spca
objects fromstep_lincomp
, and refactor methods.- Support user-specified center and scale functions.
- Rename
tidy()
columnvalue
toweight
. - Rename
tidy()
columncomponent
toname
.
- Set
GBMModel
distribution to bernoulli, instead of multinomial, for binary responses.
- Add global setting
RHS.formula
for listing of operators and functions allowed on right-hand side of traditional formulas. - Add clara clustering method to
step_kmedoids()
. - Support Cox and accelerated failure time regression for survival responses in
XGBModel
,XGBDARTModel
,XGBLinearModel
, andXGBTreeModel
.
- Set
NNetModel
linout
argument automatically according to the response variable type (numeric:TRUE
, other:FALSE
). Previously,linout
had a default value ofFALSE
as defined in thennet
package.
- CRAN release.
- Display progress bars for sequential resampling iterations.
- R 4.0 data.frame compatibility updates for calibration curves.
- Fix recipe prediction with StackedModel and SuperModel
- Display progress messages for any foreach parallel backend.
- Show all error messages when resample selection stops.
- Preserve predictor names in
NNetModel
fit()
method. - Fix aggregation of performance curves with infinite values.
- Add progress bar and verbose output options for
resample()
methods. - Get non-negative probabilities for survival confusion matrix.
- Update Using webpages and vignette.
- Fix
BARTMachineModel
to predict highest binary response level. - Grid tune
BARTMachineModel
nu
parameter for numeric responses only.
- Extend
ModeledInput()
toSelectedModelFrame
,SelectedModelRecipe
, andTunedModelRecipe
.
- Fix updating of recipe parameters in
TunedInput()
.
- Print
StackedModel
andSuperModel
training information. - Fix missing case names when resampling with recipes.
- CRAN release.
- Add cost-complexity pruning parameters to
TreeModel
. - Perform stratified resampling automatically for
ModeledInput()
andSelectedInput()
objects constructed with formulas and matrices.
- Revisions needed to some
fit()
methods to ensure that unprepped recipes are passed to models, likeTunedModed
,StackedModel
,SelectedModel
andSuperModel
, needing to replicate preprocessing steps in their resampling routines. - Extend
GLMModel
to factor and matrix responses. - Use
fun
instead of deprecatedfun.y
in ggplot2 functions. - Capture user-supplied parameters passed in to the ellipsis of model constructor functions that have them.
- Compatibility fix for tibble 3.0.0.
- Include missing values in model matrices created internally from formulas.
- Improve specificity of
metricinfo()
results for factor responses. - Correct
SplitControl()
to train on the split sample instead of the full dataset. - Perform stratified resampling automatically when
fit()
formula and matrix methods are called with meta-models.
- CRAN release.
- Extend
print()
argumentn
to data frame and matrix columns for more concise display of large data structures. - Add preprocessing recipe functions
step_kmeans()
,step_kmedoids()
, andstep_spca()
.
- Internal changes:
- Remove
MLModel
sloty
. - Rename
ModelFrame
andModelRecipe
columns(casenames)
to(names)
. - Register
ModelFrame
inheritance fromdata.frame
. - Define
Terms
S4 classes forModelFrame
slotterms
.
- Remove
- Implement
ModeledInput
,SelectedInput
andTunedInput
classes and methods. - Deprecate
SelectedFormula()
,SelectedMatrix()
,SelectedModelFrame()
,SelectedRecipe()
, andTunedRecipe()
. - Remove deprecated
tune()
. - Rename global setting
stat.Curves
tostat.Curve
.
- Rename global setting
stat.Train
tostat.train
. - Add print methods for
SelectedModel
,StackedModel
,SuperModel
, andTunedModel
. - Revise training methods to ensure nested resampling of
SelectedRecipe
andTunedRecipe
. - Return list of all training steps in
MLModel
trainbits
slot.
- Rename global setting
stat.Tune
tostat.Train
. - Enable selection of formulas, design matrices, and model frames with
SelectedFormula()
,SelectedMatrix()
, andSelectedModelFrame()
. - Rename discrete variable classes:
BinomialMatrix
→BinomialVariate
,DiscreteVector
→DiscreteVariate
,NegBinomialVector
→NegBinomialVariate
, andPoissonVector
→PoissonVariate
. - Add global setting
require
for user-specified packages to load during parallel execution of resampling algorithms. - Rename recipe role
case_strata
tocase_stratum
. - Rename
object
argument todata
inConfusionMatrix()
,SurvEvents()
, andSurvProbs()
. - Add
c
methods forBinomialVariate
,DiscreteVariate
,ListOf
, andSurvMatrix
. - Add
role_binom()
,role_case()
,role_surv()
, androle_term()
to set recipe roles. - Support
base
argument tovarimp()
for log-transformed p-values. - Rename
ParamSet
toParameterGrid
. - Add option to
reset
global settings individually. - Add
as.data.frame
methods forPerformance
,Performance
summary,PerformanceDiff
,PerformanceDiffTest
, andResamples
.
- Implement
DiscreteVector
class and subclassesBinomialVector
,NegBinomialVector
, andPoissonVector
for discrete response variables. - Extend model support to
DiscreteVector
classes as follows.DiscreteVector
: all models applicable to numeric responses.BinomialVector
/NegBinomialVector
/PoissonVector
:BlackBoostModel
,GAMBoostModel
,GLMBoostModel
,GLMModel
, andGLMStepAICModel
.BinomialVector
/PoissonVector
:GLMNetModel
.PoissonVector
:GBMModel
andXGBModel
- Add support for offset terms in formulas, model matrices, and recipes.
- Add recipe tune information to fitted
MLModel
. - Replace
Calibration()
,Confusion()
,Curves()
,Lift()
, andResamples()
withc
methods. - Redefine
Confusion
S3 class asConfusionList
S4 class. - Remove support for one-element list to
metricinfo()
andmodelinfo()
. - Remove deprecated
expand.model()
. - Expire deprecated
tune()
.
- Calculate regression variable importance as negative log p-values.
- Support empty vectors in
metricinfo()
andmodelinfo()
. - Add support for dials package parameter sets with
ParamSet()
.
- Add
as.MLModel()
for coercingMLModelFit
toMLModel
. - Deprecate
tune()
; callfit()
with aSelectedModel
orTunedModel
instead.
- Implement optimism-corrected cross-validation (
CVOptimismControl
). - Fix
BootOptimismControl
error with 2D responses. - Add global option
max.print
for the number of models and data frame rows to show with print methods. - Enable recipe selection with
SelectedRecipe()
. - Refactor
tune()
methods. - Replace
MLModelFit
elementfitbits
(MLFitBits
object) withmlmodel
(MLModel
object). - Rename
VarImp
slotcenter
toshift
.
- Use tibbles for parameter grids.
- Add random sampling option to
expand_model()
,expand_params()
, andexpand_steps()
. - Display information for model functions and objects more compactly.
- Add global setting for default cutoff threshold value.
- Add option to reset all global settings.
- Enable recipe tuning with
TunedRecipe()
. - Add
expand_model()
for model expansion over tuning parameters. - Add
expand_params()
for model parameters expansion. - Add
expand_steps()
for recipe step parameters expansion. - Implement
MLModelFunction
andMLModelList
classes. - Add fit methods for
MLModel
,MLModelFunction
, andMLModelList
. - Fix
NNetModel
fit error with binary and factor responses. - Fix
modelinfo()
function not found error.
- Implement exception handling of
tune()
resampling failures. - Remove deprecated
types
anddesign
arguments fromMLModel()
.
- Implement global settings for default resampling control, performance metrics, summary statistics, and tuning grid.
- Support vector arguments in
metricinfo()
andmodelinfo()
. - Update package documentation.
- Implement model:
SelectedModel
. - Remove
maximize
argument fromtune()
andTunedModel
. - Support lists as arguments to
StackedModel()
andSuperModel
.
- Revert renaming of
expand.model()
. - Exclude 0 distance from
KNNModel
tuning grid. - Improve random tuning grid coverage.
- Implement model:
TunedModel
. - Remove deprecated
na.action
argument fromModelFrame
methods. - Rename
MLModel()
argumenttypes
toresponse_types
. - Rename
MLModel()
argumentdesign
topredictor_encoding
. - Rename
expand.model()
toexpand_model()
.
- CRAN release.
- Implement optimism-corrected bootstrap resampling (
BootOptimismControl
). - Store case names in
ModelFrame
andModelRecipe
and save toResamples
.
- Add
BinaryConfusionMatrix
andOrderedConfusionMatrix
classes. - Export
ConfusionMatrix
constructor. - Extend
metricinfo()
to confusion matrices. - Refactor performance metrics methods code.
- Check and convert ordered factors in response methods.
- Check consistency of extracted variables in response methods.
- Add metrics methods for
Resamples
.
- Improve compatibility with preprocessing recipes.
- Allow base math functions and operators in
ModelFrame
formulas.
- Save
ModelFrame
response in first column. - Unexport
response
formula method. - Add
ICHomes
dataset. - Add
center
andscale
slot toVarImp
.
- Prohibit in-line functions in
ModelFrame
formulas. - Rename
response
function argument fromdata
tonewdata
.
- Add
fit
,resample
, andtune
methods for design matrices. - Reduce computational overhead for design matrices and recipes.
- Rename
ModelFrame()
argumentna.action
tona.rm
.
- Implement parametric (
"exponential"
,"rayleigh"
,"weibull"
) estimation of baseline survival functions. - Set
"weibull"
as the default distribution for survival mean estimation. - Add extract method for
Resamples
. - Add
na.rm
argument tocalibration()
,confusion()
,performance()
, andperformance_curve()
. - Add loess
span
argument tocalibration()
. - Change
SurvMatrix
from S4 to S3 class.
- Add
method
option topredict()
for Breslow, Efron (default), or Fleming-Harrington estimation of survival curves for Cox proportional hazards-based models. - Add
dist
option topredict()
for exponential or Weibull approximation to estimated survival curves. - Add
dist
option tocalibration()
for distributional estimation of observed mean survival. - Add
dist
option tor2()
for distributional estimation of the total sum of squares mean. - Handle unnamed arguments in
metricinfo()
andmodelinfo()
.
- Implement metrics:
auc
,fnr
,fpr
,rpp
,tnr
,tpr
. - Implement performance curves, including ROC and precision recall.
- Implement
SurvMatrix
classes for predicted survival events and probabilities to eliminate need for separatetimes
arguments in calibration, confusion, metrics, and performance functions. - Add calibration curves for predicted survival means.
- Add lift curves for predicted survival probabilities.
- Add recipe support for survival and matrix outcomes.
- Rename
MLControl
argumentsurv_times
totimes
. - Fix identification of recipe
case_weight
andcase_strata
variables. - Launch package website.
- Bring Introduction vignette up to date with package features.
- Implement model:
BARTModel
. - Implement model tuning over automatically generated grids of parameter values and random sampling of grid points.
- Add metrics for predicted survival times:
accuracy
,f_score
,kappa2
,npv
,ppv
,pr_auc
,precision
,recall
,roc_index
,sensitivity
,specificity
- Add metrics for predicted survival means:
cindex
,gini
,mae
,mse
,msle
,r2
,rmse
,rmsle
. - Add
performance
and metric methods forConfusionMatrix
. - Add confusion matrices for predicted survival times.
- Standardize predict functions to return mean survival when times are not specified.
- Replace
MLModel
slot and constructor argumentnvars
withdesign
.
- Implement models:
BARTMachineModel
,LARSModel
. - Implement performance metrics:
gini
, multi-classpr_auc
androc_auc
, multivariatermse
,msle
,rmsle
. - Implement smooth calibration curves.
- Implement
MLMetric
class for performance metrics. - Add
as.data.frame
method forModelFrame
. - Add
expand.model
function. - Add
label
slot toMLModel
. - Expand
metricinfo/modelinfo
support for mixed argument types. - Rename
calibration
argumentn
tobreaks
. - Rename
modelmetrics
function toperformance
. - Rename
ModelMetrics/Diff
classes toPerformance/Diff
. - Change
MLModelTune
slotresamples
toperformance
.
- Implement models:
AdaBagModel
,AdaBoostModel
,BlackBoostModel
,EarthModel
,FDAModel
,GAMBoostModel
,GLMBoostModel
,MDAModel
,NaiveBayesModel
,PDAModel
,RangerModel
,RPartModel
,TreeModel
- Implement user-specified performance metrics in
modelmetrics
function. - Implement metrics:
accuracy
,brier
,cindex
,cross_entropy
,f_score
,kappa2
,mae
,mse
,npv
,ppv
,pr_auc
,precision
,r2
,recall
,roc_auc
,roc_index
,sensitivity
,specificity
,weighted_kappa2
. - Add
cutoff
argument toconfusion
function. - Add
modelinfo
andmetricinfo
functions. - Add
modelmetrics
method forResamples
. - Add
ModelMetrics
class withprint
andsummary
methods. - Add
response
method forrecipe
. - Export
Calibration
constructor. - Export
Confusion
constructor. - Export
Lift
constructor. - Extend
calibration
arguments to observed and predicted responses. - Extend
confusion
arguments to observed and predicted responses. - Extend
lift
arguments to observed and predicted responses. - Extend
metrics
andstats
function arguments to accept function names. - Extend
Resamples
to arguments with multiple models. - Change
CoxModel
,GLMModel
, andSurvRegModel
constructor definitions so that model control parameters are specified directly instead of with a separatecontrol
argument/structure. - Change
predict(..., times = numeric())
function calls to survival model fits to return predicted values in the same direction as survival times. - Change
predict(..., times = numeric())
function calls toCForestModel
fits to return predicted means instead of medians. - Change
tune
function argumentmetrics
to be defined in terms of a user-specified metric or metrics. - Deprecate MLControl arguments
cutoff
,cutoff_index
,na.rm
, andsummary
.
- Implement linear models (
LMModel
), linear discriminant analysis (LDAModel
), and quadratic discriminant analysis (QDAModel
). - Implement confusion matrices.
- Support matrix response variables.
- Support user-specified stratification variables for resampling via the
strata
argument ofModelFrame
or the role of"case_strata"
for recipe variables. - Support user-specified case weights for model fitting via the role of
"case_weight"
for recipe variables. - Provide fallback for models with undefined variable importance.
- Update the importing of
prepper
due to its relocation fromrsample
torecipes
.
- Implement partial dependence, calibration, and lift estimation and plotting.
- Implement k-nearest neighbors model (
KNNModel
), stacked regression models (StackedModel
), super learner models (SuperModel
), and extreme gradient boosting (XGBModel
). - Implement resampling constructors for training resubstitution (
TrainControl
) and split training and test sets (SplitControl
). - Implement
ModelFrame
class for general model formula and dataset specification. - Add multi-class Brier score to
modelmetrics()
. - Extend
predict()
to automatically preprocess recipes and to use training data as thenewdata
default. - Extend
tune()
to lists of models. - Extent
summary()
argumentstats
to functions. - Fix survival probability calculations in
GBMModel
andGLMNetModel
. - Change
MLControl
argumentna.rm
default fromFALSE
toTRUE
. - Removed
na.rm
argument frommodelmetrics()
.
- Initial public release