-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernels.c
409 lines (392 loc) · 10.9 KB
/
kernels.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#include "kernels.h"
#include "specialMath.h"
EscapeFunc escapeTimeFP = escapeTimeFPGeneral;
EscapeFunc escapeTimeFPSmooth = escapeTimeFPGeneralSmooth;
#define SMOOTH_EXTRA_ITERS 5
#define SELECT_KERNEL(n) \
case n: \
escapeTimeFP = fp##n; \
escapeTimeFPSmooth = fp##n##s; \
break;
void setFPPrec(int prec)
{
switch(prec)
{
SELECT_KERNEL(2)
SELECT_KERNEL(3)
SELECT_KERNEL(4)
SELECT_KERNEL(5)
SELECT_KERNEL(6)
SELECT_KERNEL(7)
SELECT_KERNEL(8)
SELECT_KERNEL(9)
SELECT_KERNEL(10)
default: //general case, compatible with any precision
escapeTimeFP = escapeTimeFPGeneral;
escapeTimeFPSmooth = escapeTimeFPGeneralSmooth;
}
}
float smoothEscapeTime(float intIters, double zr, double zi, double cr, double ci)
{
if(intIters == -1 || intIters == maxiter)
return -1;
double zr2, zi2, zri;
for(int i = 0; i < SMOOTH_EXTRA_ITERS; i++)
{
zr2 = zr * zr;
zi2 = zi * zi;
zri = 2 * zr * zi;
zr = zr2 - zi2 + cr;
zi = zri + ci;
}
double finalMag = sqrt(zr * zr + zi * zi);
return smoothEscapeFormula(intIters, finalMag);
}
float smoothEscapeFormula(int iters, double mag)
{
if(iters == -1)
return -1;
return iters + 1 + SMOOTH_EXTRA_ITERS - logl(logl(mag)) / M_LN2;
}
float escapeTimeFPGeneral(FP* restrict real, FP* restrict imag)
{
//real, imag make up "c" in z = z^2 + c
MAKE_STACK_FP(four);
loadValue(&four, 4);
MAKE_STACK_FP(zr);
loadValue(&zr, 0);
MAKE_STACK_FP(zi);
loadValue(&zi, 0);
MAKE_STACK_FP(zrsquare);
MAKE_STACK_FP(zisquare);
MAKE_STACK_FP(zri);
MAKE_STACK_FP(mag);
int iter = 0;
for(; iter < maxiter; iter++)
{
fpmul3(&zrsquare, &zr, &zr);
fpmul3(&zisquare, &zi, &zi);
fpmul3(&zri, &zr, &zi);
//want 2 * zr * zi
fpshlOne(zri);
fpsub3(&zr, &zrsquare, &zisquare);
fpadd2(&zr, real);
fpadd3(&zi, &zri, imag);
fpadd3(&mag, &zrsquare, &zisquare);
if(mag.value.val[0] >= four.value.val[0])
return iter;
}
return -1;
}
float escapeTimeFPGeneralSmooth(FP* restrict real, FP* restrict imag)
{
//real, imag make up "c" in z = z^2 + c
MAKE_STACK_FP(four);
loadValue(&four, 4);
MAKE_STACK_FP(zr);
loadValue(&zr, 0);
MAKE_STACK_FP(zi);
loadValue(&zi, 0);
MAKE_STACK_FP(zrsquare);
MAKE_STACK_FP(zisquare);
MAKE_STACK_FP(zri);
MAKE_STACK_FP(mag);
int iter;
for(iter = 0; iter < maxiter; iter++)
{
fpmul3(&zrsquare, &zr, &zr);
fpmul3(&zisquare, &zi, &zi);
fpmul3(&zri, &zr, &zi);
//want 2 * zr * zi
fpshlOne(zri);
fpsub3(&zr, &zrsquare, &zisquare);
fpadd2(&zr, real);
fpadd3(&zi, &zri, imag);
fpadd3(&mag, &zrsquare, &zisquare);
if(mag.value.val[0] >= four.value.val[0])
{
break;
}
}
//did not diverge
return smoothEscapeTime(iter, getValue(&zr), getValue(&zi), getValue(real), getValue(imag));
}
float escapeTime64(double cr, double ci)
{
int iter = 0;
double zr = 0;
double zi = 0;
double zri, zr2, zi2, mag;
for(; iter < maxiter; iter++)
{
zr2 = zr * zr;
zi2 = zi * zi;
zri = 2 * zr * zi;
mag = zr2 + zi2;
if(mag >= 4)
{
break;
}
zr = zr2 - zi2 + cr;
zi = zri + ci;
}
return iter == maxiter ? -1 : iter;
}
float escapeTime80(long double cr, long double ci)
{
int iter = 0;
long double zr = 0;
long double zi = 0;
long double zri, zr2, zi2, mag;
for(; iter < maxiter; iter++)
{
zr2 = zr * zr;
zi2 = zi * zi;
zri = 2 * zr * zi;
mag = zr2 + zi2;
if(mag >= 4)
{
break;
}
zr = zr2 - zi2 + cr;
zi = zri + ci;
}
return iter == maxiter ? -1 : iter;
}
float escapeTime64Smooth(double cr, double ci)
{
int iter = 0;
double zr = 0;
double zi = 0;
double zri, zr2, zi2, mag;
for(; iter < maxiter; iter++)
{
zr2 = zr * zr;
zi2 = zi * zi;
zri = 2 * zr * zi;
mag = zr2 + zi2;
if(mag >= 4)
{
break;
}
zr = zr2 - zi2 + cr;
zi = zri + ci;
}
return smoothEscapeTime(iter, zr, zi, cr, ci);
}
float escapeTime80Smooth(long double cr, long double ci)
{
int iter = 0;
long double zr = 0;
long double zi = 0;
long double zri, zr2, zi2, mag;
for(; iter < maxiter; iter++)
{
zr2 = zr * zr;
zi2 = zi * zi;
zri = 2 * zr * zi;
mag = zr2 + zi2;
if(mag >= 4)
{
break;
}
zr = zr2 - zi2 + cr;
zi = zri + ci;
}
return smoothEscapeTime(iter, zr, zi, cr, ci);
}
void escapeTimeVec32(float* restrict out, float* restrict real, float* restrict imag)
{
__m256 four = _mm256_set1_ps(4);
__m256 cr = _mm256_load_ps(real);
__m256 ci = _mm256_load_ps(imag);
__m256 zr = _mm256_setzero_ps();
__m256 zi = _mm256_setzero_ps();
__m256i itercount = _mm256_setzero_si256();
for(int i = 0; i < maxiter; i++)
{
__m256 zr2 = _mm256_mul_ps(zr, zr);
__m256 zi2 = _mm256_mul_ps(zi, zi);
__m256 mag = _mm256_add_ps(zr2, zi2);
//compare all 8 magnitudes against 4.0 (in four)
//predicate 0x1: a < b
__m256 cmp = _mm256_cmp_ps(mag, four, 2);
//prepare to add 1 to each int in itercount
__m256i iteradd = _mm256_set1_epi32(1);
//but, only add to lanes where four < mag was true
iteradd = _mm256_and_si256(iteradd, cmp);
//update itercounts
itercount = _mm256_add_epi32(itercount, iteradd);
//check for early break condition
if(_mm256_testz_ps(cmp, cmp))
{
//all pixels have diverged: (mag < 4) false on all lanes
break;
}
//zr = zr^2 - zi^2 + cr
__m256 zri = _mm256_mul_ps(zr, zi);
zr = _mm256_sub_ps(zr2, zi2);
zr = _mm256_add_ps(zr, cr);
zri = _mm256_add_ps(zri, zri);
zi = _mm256_add_ps(zri, ci);
}
int tempIters[8] __attribute__ ((aligned(32)));
_mm256_store_si256((__m256i*) tempIters, itercount);
//take output from itersInt
for(int i = 0; i < 8; i++)
{
if(tempIters[i] == maxiter)
out[i] = -1;
else
out[i] = tempIters[i];
}
}
void escapeTimeVec32Smooth(float* restrict out, float* restrict real, float* restrict imag)
{
__m256 four = _mm256_set1_ps(4);
__m256 cr = _mm256_load_ps(real);
__m256 ci = _mm256_load_ps(imag);
__m256 zr = _mm256_setzero_ps();
__m256 zi = _mm256_setzero_ps();
__m256i itercount = _mm256_setzero_si256();
__m256 prevCmp = _mm256_setzero_ps();
float finalReal[8] __attribute__ ((aligned(32)));
float finalImag[8] __attribute__ ((aligned(32)));
for(int i = 0; i < maxiter; i++)
{
__m256 zr2 = _mm256_mul_ps(zr, zr);
__m256 zi2 = _mm256_mul_ps(zi, zi);
__m256 mag = _mm256_add_ps(zr2, zi2);
//compare all 8 magnitudes against 4.0 (in four)
//predicate 0x1: a < b
__m256 cmp = _mm256_cmp_ps(mag, four, 2);
__m256 newDiv = _mm256_xor_ps(cmp, prevCmp);
prevCmp = cmp;
_mm256_maskstore_ps(finalReal, newDiv, zr);
_mm256_maskstore_ps(finalImag, newDiv, zi);
//prepare to add 1 to each int in itercount
__m256i iteradd = _mm256_set1_epi32(1);
//but, only add to lanes where four < mag was true
iteradd = _mm256_and_si256(iteradd, cmp);
//update itercounts
itercount = _mm256_add_epi32(itercount, iteradd);
//check for early break condition
if(_mm256_testz_ps(cmp, cmp))
{
//all pixels have diverged: (mag < 4) false on all lanes
break;
}
//zr = zr^2 - zi^2 + cr
__m256 zri = _mm256_mul_ps(zr, zi);
zr = _mm256_sub_ps(zr2, zi2);
zr = _mm256_add_ps(zr, cr);
zri = _mm256_add_ps(zri, zri);
zi = _mm256_add_ps(zri, ci);
}
int tempIters[8] __attribute__ ((aligned(32)));
_mm256_store_si256((__m256i*) tempIters, itercount);
//take output from itersInt
for(int i = 0; i < 8; i++)
{
if(tempIters[i] == maxiter)
out[i] = -1;
else
out[i] = smoothEscapeTime(tempIters[i], finalReal[i], finalImag[i], real[i], imag[i]);
}
}
void escapeTimeVec64(float* restrict out, double* restrict real, double* restrict imag)
{
__m256d four = _mm256_set1_pd(4);
__m256d cr = _mm256_load_pd(real);
__m256d ci = _mm256_load_pd(imag);
__m256d zr = _mm256_setzero_pd();
__m256d zi = _mm256_setzero_pd();
__m256i itercount = _mm256_setzero_si256();
for(int i = 0; i < maxiter; i++)
{
__m256d zr2 = _mm256_mul_pd(zr, zr);
__m256d zi2 = _mm256_mul_pd(zi, zi);
__m256d mag = _mm256_add_pd(zr2, zi2);
//compare all 8 magnitudes against 4.0 (in four)
//predicate 0x1: a < b
__m256d cmp = _mm256_cmp_pd(mag, four, 2);
//prepare to add 1 to each int in itercount
__m256i iteradd = _mm256_set1_epi64x(1);
//but, only add to lanes where four < mag was true
iteradd = _mm256_and_si256(iteradd, cmp);
//update itercounts
itercount = _mm256_add_epi32(itercount, iteradd);
//check for early break condition
if(_mm256_testz_pd(cmp, cmp))
{
//all pixels have diverged: (mag < 4) false on all lanes
break;
}
//zr = zr^2 - zi^2 + cr
__m256d zri = _mm256_mul_pd(zr, zi);
zr = _mm256_sub_pd(zr2, zi2);
zr = _mm256_add_pd(zr, cr);
zri = _mm256_add_pd(zri, zri);
zi = _mm256_add_pd(zri, ci);
}
long long tempIters[4] __attribute__ ((aligned(32)));
_mm256_store_si256((__m256i*) tempIters, itercount);
//take output from itersInt
for(int i = 0; i < 4; i++)
{
if(tempIters[i] == maxiter)
out[i] = -1;
else
out[i] = tempIters[i];
}
}
void escapeTimeVec64Smooth(float* restrict out, double* restrict real, double* restrict imag)
{
__m256d four = _mm256_set1_pd(4);
__m256d cr = _mm256_load_pd(real);
__m256d ci = _mm256_load_pd(imag);
__m256d zr = _mm256_setzero_pd();
__m256d zi = _mm256_setzero_pd();
__m256i itercount = _mm256_setzero_si256();
__m256d prevCmp = _mm256_setzero_pd();
double finalReal[4] __attribute__ ((aligned(32)));
double finalImag[4] __attribute__ ((aligned(32)));
for(int i = 0; i < maxiter; i++)
{
__m256d zr2 = _mm256_mul_pd(zr, zr);
__m256d zi2 = _mm256_mul_pd(zi, zi);
__m256d mag = _mm256_add_pd(zr2, zi2);
//compare all 8 magnitudes against 4.0 (in four)
//predicate 0x1: a < b
__m256d cmp = _mm256_cmp_pd(mag, four, 2);
__m256 newDiv = _mm256_xor_pd(cmp, prevCmp);
prevCmp = cmp;
_mm256_maskstore_pd(finalReal, newDiv, zr);
_mm256_maskstore_pd(finalImag, newDiv, zi);
//prepare to add 1 to each int in itercount
__m256i iteradd = _mm256_set1_epi64x(1);
//but, only add to lanes where four < mag was true
iteradd = _mm256_and_si256(iteradd, cmp);
//update itercounts
itercount = _mm256_add_epi32(itercount, iteradd);
//check for early break condition
if(_mm256_testz_pd(cmp, cmp))
{
//all pixels have diverged: (mag < 4) false on all lanes
break;
}
//zr = zr^2 - zi^2 + cr
__m256d zri = _mm256_mul_pd(zr, zi);
zr = _mm256_sub_pd(zr2, zi2);
zr = _mm256_add_pd(zr, cr);
zri = _mm256_add_pd(zri, zri);
zi = _mm256_add_pd(zri, ci);
}
long long tempIters[4] __attribute__ ((aligned(32)));
_mm256_store_si256((__m256i*) tempIters, itercount);
//write to iterbuf
for(int i = 0; i < 4; i++)
{
out[i] = smoothEscapeTime(tempIters[i], finalReal[i], finalImag[i], real[i], imag[i]);
}
}