Skip to content

Latest commit

 

History

History
 
 

server-extension

Server Hello World

Create a minimal extension with backend (i.e. server) and frontend parts.

server extension example

It is strongly recommended to read the basic hello-world example before diving into this one.

The template folder structure

Writing a JupyterLab extension usually starts from a configurable template. It can be downloaded with the copier tool and the following command for an extension with a server part:

pip install copier jinja2-time
mkdir my_extension
cd my_extension
copier https://github.com/jupyterlab/extension-template .

You will be asked for some basic information that could for example be setup like this (be careful to pick server as kind):

🎤 What is your extension kind?
   server
🎤 Extension author name
   tuto
🎤 Extension author email
   tuto@help.you
🎤 JavaScript package name
   jlab-ext-example
🎤 Python package name
   jlab_ext_example
🎤 Extension short description
   A minimal JupyterLab extension with backend and frontend parts.
🎤 Does the extension have user settings?
   No
🎤 Do you want to set up Binder example?
   Yes
🎤 Do you want to set up tests for the extension?
   Yes
🎤 Git remote repository URL
   https://github.com/github_username/jlab-ext-example

The python name must be a valid Python module name (characters such -, @ or / are not allowed). It is nice for user to test your extension online, so the set up Binder was set to Yes.

The template creates files in the current director that looks like this:

.
├── CHANGELOG.md
├── .gitignore
├── LICENSE                    # License of your code
├── README.md                  # Instructions to install and build
├── RELEASE.md
├── .copier-answers.yml        # Answers given when executing the extension template
│
├── .github
│   └── workflows
│       ├── binder-on-pr.yml   # Test PR online
│       ├── build.yml          # Test extension on GitHub CI
│       ├── update-integration-tests.yml
│       │  # Handle package release as GitHub actions
│       ├── check-release.yml
│       ├── enforce-label.yml
│       ├── prep-release.yml
│       └── publish-release.yml
│
│  # Online extension demo
├── binder
│   ├── environment.yml
│   └── postBuild
│
│  # Backend (server) Files
├── conftest.py                # Python unit tests configuration
├── install.json               # Information retrieved by JupyterLab to help users know how to manage the extension
├── pyproject.toml             # Python package configuration
├── setup.py                   # Optional - for backward compatibility if a tool does not support pyproject.toml
│
├── jlab_ext_example
│   ├── handlers.py            # API handler (where things happen)
│   ├── __init__.py            # Hook the extension in the server
│   └── tests                  # Python unit tests
│       ├── __init__.py
│       └── test_handlers.py
├── jupyter-config             # Server extension auto-install
│   ├── nb-config
│   │   └── jlab_ext_example.json
│   └── server-config
│       └── jlab_ext_example.json
│
│  # Frontend Files
├── babel.config.js
├── jest.config.js
├── package.json               # Information about the frontend package
├── .prettierignore
├── tsconfig.json              # Typescript compilation configuration
├── tsconfig.test.json
├── .yarnrc.yml                # Yarn package manager configuration
│
├── src                        # Actual code of the extension
│   ├── handler.ts
│   ├── index.ts
│   └── __tests__              # JavaScript unit tests
│       └── jupyterlab_examples_server.spec.ts
│
├── style                      # CSS styling
│   ├── base.css
│   ├── index.css
│   └── index.js
│
└── ui-tests                   # Integration tests
    ├── jupyter_server_test_config.py
    ├── package.json
    ├── playwright.config.js
    ├── README.md
    ├── tests
    │   └── jupyterlab_examples_server.spec.ts
    └── yarn.lock

There are two major parts in the extension:

  • A Python package for the server extension and the packaging
  • A NPM package for the frontend extension

In this example, you will see that the template code have been extended to demonstrate the use of GET and POST HTTP requests.

Frontend Part

The entry point for the frontend extension is src/index.ts. The communication with the server extension is contained in another file src/handler.ts. So you need to import it:

// src/index.ts#L12-L12

import { requestAPI } from './handler';

In the activate function, the server extension is first called through a GET request on the endpoint /jlab-ext-example/hello. The response from the server is printed in the web browser console:

// src/index.ts#L42-L50

requestAPI<any>('hello')
  .then(data => {
    console.log(data);
  })
  .catch(reason => {
    console.error(
      `The jupyterlab_examples_server server extension appears to be missing.\n${reason}`
    );
  });

As the server response is not instantaneous, the request is done asynchronously using Promise. You could also use the keyword async-await. But it is not recommended in a plugin activate method as it may delay the application start up time.

A GET request cannot carry data from the frontend to the server. To achieve that, you will need to execute a POST request. In this example, a POST request is sent to the /jlab-ext-example/hello endpoint with the data {name: 'George'}:

// src/index.ts#L53-L65

const dataToSend = { name: 'George' };
requestAPI<any>('hello', {
  body: JSON.stringify(dataToSend),
  method: 'POST'
})
  .then(reply => {
    console.log(reply);
  })
  .catch(reason => {
    console.error(
      `Error on POST /jupyterlab-examples-server/hello ${dataToSend}.\n${reason}`
    );
  });

The difference with the GET request is the use of the body option to send data and the method option to set the appropriate HTTP method.

The data sent from the frontend to the backend can have different types. In JupyterLab, the most common format is JSON. But JSON cannot directly be sent to the server, it needs to be stringified to be carried over by the request.

The communication logic with the server is hidden in the requestAPI function. Its definition is :

// src/handler.ts#L12-L46

export async function requestAPI<T>(
  endPoint = '',
  init: RequestInit = {}
): Promise<T> {
  // Make request to Jupyter API
  const settings = ServerConnection.makeSettings();
  const requestUrl = URLExt.join(
    settings.baseUrl,
    'jupyterlab-examples-server', // API Namespace
    endPoint
  );

  let response: Response;
  try {
    response = await ServerConnection.makeRequest(requestUrl, init, settings);
  } catch (error) {
    throw new ServerConnection.NetworkError(error as any);
  }

  let data: any = await response.text();

  if (data.length > 0) {
    try {
      data = JSON.parse(data);
    } catch (error) {
      console.log('Not a JSON response body.', response);
    }
  }

  if (!response.ok) {
    throw new ServerConnection.ResponseError(response, data.message || data);
  }

  return data;
}

First the server settings are obtained from:

// src/handler.ts#L17-L17

const settings = ServerConnection.makeSettings();

This requires to add @jupyterlab/services to the package dependencies:

jlpm add @jupyterlab/services

Then the class ServerConnection can be imported:

// src/handler.ts#L3-L3

import { ServerConnection } from '@jupyterlab/services';

The next step is to build the full request URL:

// src/handler.ts#L18-L21

const requestUrl = URLExt.join(
  settings.baseUrl,
  'jupyterlab-examples-server', // API Namespace
  endPoint

To concatenate the various parts, the URLExt utility is imported:

// src/handler.ts#L1-L1

import { URLExt } from '@jupyterlab/coreutils';

This requires to add another dependency to the package:

jlpm add @jupyterlab/coreutils

You now have all the elements to make the request:

// src/handler.ts#L26-L26

response = await ServerConnection.makeRequest(requestUrl, init, settings);

Finally, once the server response is obtained, its body is interpreted as JSON. And the resulting data is returned.

// src/handler.ts#L31-L45

let data: any = await response.text();

if (data.length > 0) {
  try {
    data = JSON.parse(data);
  } catch (error) {
    console.log('Not a JSON response body.', response);
  }
}

if (!response.ok) {
  throw new ServerConnection.ResponseError(response, data.message || data);
}

return data;

This example also showcases how you can serve static files from the server extension.

// src/index.ts#L67-L88

const { commands, shell } = app;
const command = CommandIDs.get;
const category = 'Extension Examples';

commands.addCommand(command, {
  label: 'Get Server Content in a IFrame Widget',
  caption: 'Get Server Content in a IFrame Widget',
  execute: () => {
    const widget = new IFrameWidget();
    shell.add(widget, 'main');
  }
});

palette.addItem({ command, category: category });

if (launcher) {
  // Add launcher
  launcher.add({
    command: command,
    category: category
  });
}

Invoking the command (via the command palette or the launcher) will open a new tab with an IFrame that will display static content fetched from the server extension.

Note

  • If the response is not ok (i.e. status code not in range 200-399), a ResponseError is thrown.
  • The response body is interpreted as JSON even in case the response is not ok. In JupyterLab, it is a good practice in case of error on the server side to return a response with a JSON body. It should at least define a message key providing nice error message for the user.

Backend (Server) Part

The server part of the extension is going to be presented in this section.

JupyterLab server is built on top of the Tornado Python package. To extend the server, your extension needs to be defined as a proper Python package with some hook functions:

# jupyterlab_examples_server/__init__.py

try:
    from ._version import __version__
except ImportError:
    # Fallback when using the package in dev mode without installing
    # in editable mode with pip. It is highly recommended to install
    # the package from a stable release or in editable mode: https://pip.pypa.io/en/stable/topics/local-project-installs/#editable-installs
    import warnings
    warnings.warn("Importing 'jupyterlab_examples_server' outside a proper installation.")
    __version__ = "dev"
from .handlers import setup_handlers


def _jupyter_labextension_paths():
    return [{
        "src": "labextension",
        "dest": "@jupyterlab-examples/server-extension"
    }]


def _jupyter_server_extension_points():
    return [{
        "module": "jupyterlab_examples_server"
    }]


def _load_jupyter_server_extension(server_app):
    """Registers the API handler to receive HTTP requests from the frontend extension.

    Parameters
    ----------
    server_app: jupyterlab.labapp.LabApp
        JupyterLab application instance
    """
    setup_handlers(server_app.web_app)
    name = "jupyterlab_examples_server"
    server_app.log.info(f"Registered {name} server extension")

The _jupyter_server_extension_points provides the Python package name to the server. But the most important one is _load_jupyter_server_extension that register new handlers.

# jupyterlab_examples_server/__init__.py#L34-L34

setup_handlers(server_app.web_app)

A handler is registered in the web application by linking an url to a class. In this example the url is base_server_url/jlab-ext-example/hello and the class handler is RouteHandler:

# jupyterlab_examples_server/handlers.py#L29-L35

host_pattern = ".*$"

base_url = web_app.settings["base_url"]
# Prepend the base_url so that it works in a JupyterHub setting
route_pattern = url_path_join(base_url, "jupyterlab-examples-server", "hello")
handlers = [(route_pattern, RouteHandler)]
web_app.add_handlers(host_pattern, handlers)

For Jupyter server, the handler class must inherit from the APIHandler and it should implement the wanted HTTP verbs. For example, here, /jlab-ext-example/hello can be requested by a GET or a POST request. They will call the get or post method respectively.

# jupyterlab_examples_server/handlers.py#L10-L25

class RouteHandler(APIHandler):
    # The following decorator should be present on all verb methods (head, get, post,
    # patch, put, delete, options) to ensure only authorized user can request the
    # Jupyter server
    @tornado.web.authenticated
    def get(self):
        self.finish(json.dumps({
            "data": "This is /jupyterlab-examples-server/hello endpoint!"
        }))

    @tornado.web.authenticated
    def post(self):
        # input_data is a dictionary with a key "name"
        input_data = self.get_json_body()
        data = {"greetings": "Hello {}, enjoy JupyterLab!".format(input_data["name"])}
        self.finish(json.dumps(data))

Security Note

The methods to handle request like get, post, etc. must be decorated with tornado.web.authenticated to ensure only authenticated users can request the Jupyter server.

Once the server has carried out the appropriate task, the handler should finish the request by calling the finish method. That method can optionally take an argument that will become the response body of the request in the frontend.

# jupyterlab_examples_server/handlers.py#L15-L18

def get(self):
    self.finish(json.dumps({
        "data": "This is /jupyterlab-examples-server/hello endpoint!"
    }))

In Jupyter, it is common to use JSON as format between the frontend and the backend. But it should first be stringified to be a valid response body. This can be done using json.dumps on a dictionary.

A POST request is similar to a GET request except it may have a body containing data sent by the frontend. When using JSON as communication format, you can directly use the get_json_body helper method to convert the request body into a Python dictionary.

# jupyterlab_examples_server/handlers.py#L23-L24

input_data = self.get_json_body()
data = {"greetings": "Hello {}, enjoy JupyterLab!".format(input_data["name"])}

The part responsible to serve static content with a StaticFileHandler handler is the following:

# jupyterlab_examples_server/handlers.py#L38-L44

doc_url = url_path_join(base_url, "jupyterlab-examples-server", "public")
doc_dir = os.getenv(
    "JLAB_SERVER_EXAMPLE_STATIC_DIR",
    os.path.join(os.path.dirname(__file__), "public"),
)
handlers = [("{}/(.*)".format(doc_url), StaticFileHandler, {"path": doc_dir})]
web_app.add_handlers(host_pattern, handlers)

Security Note

The StaticFileHandler is not secured. For enhanced security, please consider using AuthenticatedFileHandler.

Note

Server extensions can be used for different frontends (like JupyterLab and Jupyter Notebook). Some additional documentation is available in the Jupyter Server documentation

Packaging the Extension

Python Package Manager

In the previous sections, the acting code has been described. But there are other files with the sole purpose of packaging the full extension nicely to help its distribution through package managers like pip.

To deploy simultaneously the frontend and the backend, the frontend NPM package needs to be built and inserted in the Python package. This is done using hatch builder with some additional plugins:

  • hatch-nodejs-version: Get package metadata from package.json to align Python and JavaScript metadata.
  • hatch-jupyter-builder: Builder plugin to build Jupyter JavaScript assets as part of the Python package. Its configuration is done in pyproject.toml:
# pyproject.toml

[build-system]
requires = ["hatchling>=1.5.0", "jupyterlab>=4.0.0,<5", "hatch-nodejs-version"]
build-backend = "hatchling.build"

[project]
name = "jupyterlab_examples_server"
readme = "README.md"
license = {text = "BSD-3-Clause License"}
requires-python = ">=3.8"
classifiers = [
    "Framework :: Jupyter",
    "Framework :: Jupyter :: JupyterLab",
    "Framework :: Jupyter :: JupyterLab :: 4",
    "Framework :: Jupyter :: JupyterLab :: Extensions",
    "Framework :: Jupyter :: JupyterLab :: Extensions :: Prebuilt",
    "License :: OSI Approved :: BSD License",
    "Programming Language :: Python",
    "Programming Language :: Python :: 3",
    "Programming Language :: Python :: 3.8",
    "Programming Language :: Python :: 3.9",
    "Programming Language :: Python :: 3.10",
    "Programming Language :: Python :: 3.11",
]
dependencies = [
    "jupyter_server>=2.0.1,<3"
]
dynamic = ["version", "description", "authors", "urls", "keywords"]

[project.optional-dependencies]
test = [
    "coverage",
    "pytest",
    "pytest-asyncio",
    "pytest-cov",
    "pytest-jupyter[server]>=0.6.0"
]

[tool.hatch.version]
source = "nodejs"

[tool.hatch.metadata.hooks.nodejs]
fields = ["description", "authors", "urls"]

[tool.hatch.build.targets.sdist]
artifacts = ["jupyterlab_examples_server/labextension"]
exclude = [".github", "binder"]

[tool.hatch.build.targets.wheel.shared-data]
"jupyterlab_examples_server/labextension" = "share/jupyter/labextensions/@jupyterlab-examples/server-extension"
"install.json" = "share/jupyter/labextensions/@jupyterlab-examples/server-extension/install.json"
"jupyter-config/server-config" = "etc/jupyter/jupyter_server_config.d"

[tool.hatch.build.hooks.version]
path = "jupyterlab_examples_server/_version.py"

[tool.hatch.build.hooks.jupyter-builder]
dependencies = ["hatch-jupyter-builder>=0.5"]
build-function = "hatch_jupyter_builder.npm_builder"
ensured-targets = [
    "jupyterlab_examples_server/labextension/static/style.js",
    "jupyterlab_examples_server/labextension/package.json",
]
skip-if-exists = ["jupyterlab_examples_server/labextension/static/style.js"]

[tool.hatch.build.hooks.jupyter-builder.build-kwargs]
build_cmd = "build:prod"
npm = ["jlpm"]

[tool.hatch.build.hooks.jupyter-builder.editable-build-kwargs]
build_cmd = "install:extension"
npm = ["jlpm"]
source_dir = "src"
build_dir = "jupyterlab_examples_server/labextension"

[tool.jupyter-releaser.options]
version_cmd = "hatch version"

[tool.jupyter-releaser.hooks]
before-build-npm = [
    "python -m pip install 'jupyterlab>=4.0.0,<5'",
    "jlpm",
    "jlpm build:prod"
]
before-build-python = ["jlpm clean:all"]

[tool.check-wheel-contents]
ignore = ["W002"]

It will build the frontend NPM package through its factory, and will ensure one of the generated files is jupyterlab_examples_server/labextension/package.json:

# pyproject.toml#L57-L68

[tool.hatch.build.hooks.jupyter-builder]
dependencies = ["hatch-jupyter-builder>=0.5"]
build-function = "hatch_jupyter_builder.npm_builder"
ensured-targets = [
    "jupyterlab_examples_server/labextension/static/style.js",
    "jupyterlab_examples_server/labextension/package.json",
]
skip-if-exists = ["jupyterlab_examples_server/labextension/static/style.js"]

[tool.hatch.build.hooks.jupyter-builder.build-kwargs]
build_cmd = "build:prod"
npm = ["jlpm"]

It will copy the NPM package in the Python package and force it to be copied in a place JupyterLab is looking for frontend extensions when the Python package is installed:

# pyproject.toml#L49-L50

[tool.hatch.build.targets.wheel.shared-data]
"jupyterlab_examples_server/labextension" = "share/jupyter/labextensions/@jupyterlab-examples/server-extension"

The last piece of configuration needed is the enabling of the server extension. This is done by copying the following JSON file:

// jupyter-config/server-config/jupyterlab_examples_server.json

{
  "ServerApp": {
    "jpserver_extensions": {
      "jupyterlab_examples_server": true
    }
  }
}

in the appropriate jupyter folder (etc/jupyter/jupyter_server_config.d):

# pyproject.toml#L52-L52

"jupyter-config/server-config" = "etc/jupyter/jupyter_server_config.d"

JupyterLab Extension Manager

The distribution as a Python package has been described in the previous subsection. But in JupyterLab, users have an extension manager at their disposal to find extensions. If, like in this example, your extension needs a server extension, you should inform the user about that dependency by adding the discovery metadata to your package.json file:

// package.json#L97-L107

"jupyterlab": {
    "discovery": {
        "server": {
            "managers": [
                "pip"
            ],
            "base": {
                "name": "jupyterlab_examples_server"
            }
        }
    },

In this example, the extension requires a server extension:

// package.json#L98-L98

"discovery": {

And that server extension is available through pip:

// package.json#L99-L101

"server": {
    "managers": [
        "pip"

For more information on the discovery metadata, please refer to the documentation.

Installing the Package

With the packaging described above, installing the extension is done in one command once the package is published on pypi.org:

# Install the server extension and
# copy the frontend extension where JupyterLab can find it
pip install jupyterlab_examples_server

As developer, you might want to install the package in local editable mode. This will shunt the installation machinery described above. Therefore the commands to get you set are:

# Install package in development mode
pip install -e .
# Link your development version of the extension with JupyterLab
jupyter labextension develop . --overwrite
# Enable the server extension
jupyter server extension enable jupyterlab_examples_server
# Rebuild extension Typescript source after making changes
jlpm run build