-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_t3dp.py
217 lines (165 loc) · 11 KB
/
test_t3dp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.utils import save_image, make_grid
from PIL import Image, ImageDraw, ImageFont, ImageColor
import os
import json
import joblib
import copy
import heapq
import argparse
import pickle
import cv2
import time
import numpy as np
from PIL import Image
from tqdm import tqdm
from yacs.config import CfgNode as CN
from models.hmar import HMAR
from utils.utils_measure import AverageMeter
from utils.make_video import refine_visuals, make_video
from HMAR_tracker import HMAR_tracker
from deep_sort_ import nn_matching
from deep_sort_.detection import Detection
from deep_sort_.tracker import Tracker
RGB_tuples = np.vstack([np.loadtxt("utils/colors.txt", skiprows=1) , np.random.uniform(0, 255, size=(1000, 3))])
b = np.where(RGB_tuples==0)
RGB_tuples[b] = 1
def str2bool(v):
if isinstance(v, bool): return v
if v.lower() in ('yes', 'true', 't', 'y', '1'): return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False
else: raise argparse.ArgumentTypeError('Boolean value expected.')
def test_tracker(opt, hmar_tracker):
config = os.path.join('utils/config.yaml')
checkpoint = '_DATA/t3dp_hmar.pt'
HMAR_model = HMAR(config)
checkpoint = torch.load(checkpoint)
state_dict_filt = {k: v for k, v in checkpoint['model'].items() if not("perceptual_loss" in k)}
state_dict_filt = {k.replace('smplx', 'smpl'): v for k, v in state_dict_filt.items()}
HMAR_model.load_state_dict(state_dict_filt, strict=True)
HMAR_model.cuda()
HMAR_model.eval()
try: os.system("mkdir out");os.system("mkdir out/" + opt.storage_folder); os.system("mkdir out/" + opt.storage_folder + "/results")
except: pass
for num_video, video_name in tqdm(enumerate(opt.videos_seq)):
if(opt.dataset=="demo"): track = joblib.load(opt.dataset_path + '/' + str(video_name) + '/hmar_' + video_name + '.pickle')
else: track = joblib.load('_DATA/detections/hmar_' + opt.dataset + "_" + str(video_name) + '.pickle')
final_results = []
final_results_dic = {}
final_visuals_dic = {}
sequence = track.keys()
for video in tqdm(sequence):
metric = nn_matching.NearestNeighborDistanceMetric(opt.metric_x, opt.th_x, opt.past_x)
tracker = Tracker(metric, max_iou_distance=0.9, max_age=opt.max_age_x, n_init=opt.n_init_x)
frame_list = sorted(list(track[video].keys()))
frame_length = len(frame_list)
max_ids = opt.max_ids_x
img_size = 256
person_id = torch.zeros(frame_length, max_ids) + -1
center = torch.zeros(frame_length, max_ids, 2)
scale = torch.zeros(frame_length, max_ids, 2)
bbox = torch.zeros(frame_length, max_ids, 4)
keypoints_2d = torch.zeros(frame_length, max_ids, 15, 2)
keypoints_3d = torch.zeros(frame_length, max_ids, 15, 3)
keypoints_3t = torch.zeros(frame_length, max_ids, 15, 3)
pose_emb = torch.zeros(frame_length, max_ids, 2048)
appe_emb = torch.zeros(frame_length, max_ids, 512)
for frame_idx, frame in enumerate(frame_list):
for idx in range(min(max_ids, len(track[video][frame]))):
person_data = track[video][frame][idx+1]
if(person_data['score']>0.5):
person_id[frame_idx, idx] = 0
center[frame_idx, idx, :] = torch.from_numpy(np.array(person_data['center']))
scale[frame_idx, idx, :] = torch.from_numpy(np.array(person_data['scale']))
bbox[frame_idx, idx, :] = torch.from_numpy(np.array([person_data['bbox'][0], person_data['bbox'][1], person_data['bbox'][0]+person_data['bbox'][2], person_data['bbox'][1]+person_data['bbox'][3]]))
keypoints_2d[frame_idx, idx, :, :] = torch.from_numpy(np.array(person_data['keypoints_2d']))
keypoints_3t[frame_idx, idx, :, :] = torch.from_numpy(np.array(person_data['keypoints_3t']))
keypoints_3d[frame_idx, idx, :, :] = torch.from_numpy(np.array(person_data['keypoints_3t'])) + torch.from_numpy(np.array(person_data['keypoints_3d']))
pose_emb[frame_idx, idx, :] = torch.from_numpy(person_data['pose_embedding'])
appe_emb[frame_idx, idx, :] = torch.from_numpy(person_data['appe_embedding'])
BS, T, P = 1, frame_length, max_ids
window = frame_length//opt.window_x
start_ = 0; start_2 = 0
for w_ in range(frame_length//window):
with torch.no_grad():
for i in range(100):
output, _ = hmar_tracker.forward(BS, window, P, [pose_emb[w_*window:(w_+1)*window].unsqueeze(0).cuda(), appe_emb[w_*window:(w_+1)*window].unsqueeze(0).cuda()],
person_id[w_*window:(w_+1)*window].unsqueeze(0),
bbox[w_*window:(w_+1)*window].unsqueeze(0),
keypoints_3d[w_*window:(w_+1)*window].unsqueeze(0))
embeddings = output["output_embeddings"]
embeddings = embeddings.view(BS, window, P, -1)
for t in list(range(window)):
t_ = t + w_*window
loc_ = np.where(person_id[w_*window:(w_+1)*window][t]!=-1)[0]
embeddings_normalized = embeddings[0, t, loc_].cpu().numpy()
detections = []
detection_filter = []
for m in range(len(bbox[w_*window:(w_+1)*window][t][loc_])):
w = bbox[w_*window:(w_+1)*window][t][loc_][m][2] - bbox[w_*window:(w_+1)*window][t][loc_][m][0]
h = bbox[w_*window:(w_+1)*window][t][loc_][m][3] - bbox[w_*window:(w_+1)*window][t][loc_][m][1]
if(h>120 and w>60):
det = Detection([bbox[w_*window:(w_+1)*window][t][loc_][m][0], bbox[w_*window:(w_+1)*window][t][loc_][m][1], w, h], 1.0, embeddings_normalized[m])
detections.append(det); detection_filter.append(m)
tracked_ids_ = []; tracked_bbox_ = []
tracker.predict()
if(len(detections)>0):
matches = tracker.update(detections)
visual_ids = []
for tracks_ in tracker.tracks:
if(tracks_.time_since_update!=0): continue
track_id = tracks_.track_id
detection_id = tracks_.detection_id[-1]
bbox_ = tracks_.bbox[-1]
visual_ids.append([detection_id, track_id])
tracked_ids_.append(track_id)
tracked_bbox_.append(bbox_)
visual_ids = np.array(visual_ids)
final_results_dic.setdefault(frame_list[t_], [tracked_ids_, tracked_bbox_, t_])
if(visual_ids.shape[0]!=0):
final_visuals_dic.setdefault(frame_list[t_], [tracked_ids_, tracked_bbox_, t_,
pose_emb[w_*window:(w_+1)*window][t][loc_][detection_filter][visual_ids[:, 0]],
np.array(center[w_*window:(w_+1)*window][t][loc_][detection_filter][visual_ids[:, 0]]),
np.array(scale[w_*window:(w_+1)*window][t][loc_][detection_filter][visual_ids[:, 0]]),
np.array(RGB_tuples[visual_ids[:, 1]])/255.0,
bbox[w_*window:(w_+1)*window][t][loc_][detection_filter],
visual_ids,
keypoints_3t[w_*window:(w_+1)*window][t][loc_][detection_filter][visual_ids[:, 0]],
])
else:
final_visuals_dic.setdefault(frame_list[t_], [tracked_ids_, tracked_bbox_, t_, [], [], [], [], [], visual_ids, []])
save_loc = video_name.split("/")[0] + "______" + video_name.split("/")[1] if("AVA" in opt.dataset_path.split("/")[-2]) else video_name
joblib.dump(final_results_dic, "out/" + opt.storage_folder + "/results/" + save_loc + ".pkl")
if(opt.save):
new_visuals_dic, refined_eval_dic = refine_visuals(final_visuals_dic)
make_video(HMAR_model, opt.save, opt.render, opt, video_name, new_visuals_dic)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='T3DP Tracker')
parser.add_argument('--dataset', type=str, default='posetrack')
parser.add_argument('--dataset_path', type=str, default="/_DATA/Posetrack_2018/")
parser.add_argument('--storage_folder', type=str, default="Videos_Final")
parser.add_argument('--th_x', type=int, default=20000)
parser.add_argument('--past_x', type=int, default=20)
parser.add_argument('--max_age_x', type=int, default=20)
parser.add_argument('--n_init_x', type=int, default=5)
parser.add_argument('--max_ids_x', type=int, default=50)
parser.add_argument('--window_x', type=int, default=1)
parser.add_argument('--downsample', type=int, default=1)
parser.add_argument('--metric_x', type=str, default="euclidean_min")
parser.add_argument('--render', type=str2bool, nargs='?', const=True, default=True)
parser.add_argument('--save', type=str2bool, nargs='?', const=True, default=True)
opt = parser.parse_args()
if(opt.dataset=="posetrack"): opt.videos_seq = np.load("_DATA/posetrack.npy")
if(opt.dataset=="mupots"): opt.videos_seq = np.load("_DATA/mupots.npy")
hmar_tracker = HMAR_tracker(mode="APK", betas=[1.0,1.0,1.0])
path_model = os.path.join('_DATA/t3dp_transformer.pth') # APK, HMAR, posetrack
prev_best = torch.load(path_model)
print("loading from ", prev_best['epoch'])
hmar_tracker.load_state_dict(prev_best['model'], strict=True)
hmar_tracker.cuda()
hmar_tracker.eval()
test_tracker(opt, hmar_tracker)