forked from chapuni/llvm
-
Notifications
You must be signed in to change notification settings - Fork 10
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Rebasing the rust patches onto llvm HEAD #3
Merged
Merged
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Thanks! |
brson
pushed a commit
that referenced
this pull request
Mar 28, 2013
std::string to a StringRef. Moreover, the method being called accepts a Twine to simplify these patterns. Fixes this ASan failure: ==6312== ERROR: AddressSanitizer: heap-use-after-free on address 0x7fd558b1af58 at pc 0xcb7529 bp 0x7fffff572080 sp 0x7fffff572078 READ of size 1 at 0x7fd558b1af58 thread T0 #0 0xcb7528 .../llvm/include/llvm/ADT/StringRef.h:192 llvm::StringRef::operator[]() #1 0x1d53c0a .../llvm/include/llvm/ADT/StringExtras.h:128 llvm::HashString() #2 0x1d53878 .../llvm/lib/Support/StringMap.cpp:64 llvm::StringMapImpl::LookupBucketFor() #3 0x1b6872f .../llvm/include/llvm/ADT/StringMap.h:352 llvm::StringMap<>::GetOrCreateValue<>() #4 0x1b61836 .../llvm/lib/MC/MCContext.cpp:109 llvm::MCContext::GetOrCreateSymbol() #5 0xe9fd47 .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:154 (anonymous namespace)::ARMELFStreamer::EmitMappingSymbol() #6 0xea01dd .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:133 (anonymous namespace)::ARMELFStreamer::EmitDataMappingSymbol() #7 0xe9f78b .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:91 (anonymous namespace)::ARMELFStreamer::EmitBytes() #8 0x1b15d82 .../llvm/lib/MC/MCStreamer.cpp:89 llvm::MCStreamer::EmitIntValue() #9 0xcc0f9b .../llvm/lib/Target/ARM/ARMAsmPrinter.cpp:713 llvm::ARMAsmPrinter::emitAttributes() #10 0xcc0d44 .../llvm/lib/Target/ARM/ARMAsmPrinter.cpp:632 llvm::ARMAsmPrinter::EmitStartOfAsmFile() #11 0x14692ad .../llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp:162 llvm::AsmPrinter::doInitialization() #12 0x1bc4677 .../llvm/lib/VMCore/PassManager.cpp:1561 llvm::FPPassManager::doInitialization() #13 0x1bc4990 .../llvm/lib/VMCore/PassManager.cpp:1595 llvm::MPPassManager::runOnModule() #14 0x1bc55e5 .../llvm/lib/VMCore/PassManager.cpp:1705 llvm::PassManagerImpl::run() #15 0x1bc5878 .../llvm/lib/VMCore/PassManager.cpp:1740 llvm::PassManager::run() #16 0xc3954d .../llvm/tools/llc/llc.cpp:378 compileModule() #17 0xc38001 .../llvm/tools/llc/llc.cpp:194 main #18 0x7fd557d6a11c __libc_start_main 0x7fd558b1af58 is located 24 bytes inside of 29-byte region [0x7fd558b1af40,0x7fd558b1af5d) freed by thread T0 here: #0 0xc337da .../llvm/projects/compiler-rt/lib/asan/asan_new_delete.cc:56 operator delete() #1 0x1ee9cef .../libstdc++-v3/include/bits/basic_string.h:535 std::string::~string() #2 0xea01dd .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:133 (anonymous namespace)::ARMELFStreamer::EmitDataMappingSymbol() #3 0xe9f78b .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:91 (anonymous namespace)::ARMELFStreamer::EmitBytes() #4 0x1b15d82 .../llvm/lib/MC/MCStreamer.cpp:89 llvm::MCStreamer::EmitIntValue() #5 0xcc0f9b .../llvm/lib/Target/ARM/ARMAsmPrinter.cpp:713 llvm::ARMAsmPrinter::emitAttributes() #6 0xcc0d44 .../llvm/lib/Target/ARM/ARMAsmPrinter.cpp:632 llvm::ARMAsmPrinter::EmitStartOfAsmFile() #7 0x14692ad .../llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp:162 llvm::AsmPrinter::doInitialization() #8 0x1bc4677 .../llvm/lib/VMCore/PassManager.cpp:1561 llvm::FPPassManager::doInitialization() #9 0x1bc4990 .../llvm/lib/VMCore/PassManager.cpp:1595 llvm::MPPassManager::runOnModule() #10 0x1bc55e5 .../llvm/lib/VMCore/PassManager.cpp:1705 llvm::PassManagerImpl::run() #11 0x1bc5878 .../llvm/lib/VMCore/PassManager.cpp:1740 llvm::PassManager::run() #12 0xc3954d .../llvm/tools/llc/llc.cpp:378 compileModule() #13 0xc38001 .../llvm/tools/llc/llc.cpp:194 main #14 0x7fd557d6a11c __libc_start_main git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169668 91177308-0d34-0410-b5e6-96231b3b80d8
brson
pushed a commit
that referenced
this pull request
Mar 28, 2013
Before: the function name was stored by the compiler as a constant string and the run-time was printing it. Now: the PC is stored instead and the run-time prints the full symbolized frame. This adds a couple of instructions into every function with non-empty stack frame, but also reduces the binary size because we store less strings (I saw 2% size reduction). This change bumps the asan ABI version to v3. llvm part. Example of report (now): ==31711==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fffa77cf1c5 at pc 0x41feb0 bp 0x7fffa77cefb0 sp 0x7fffa77cefa8 READ of size 1 at 0x7fffa77cf1c5 thread T0 #0 0x41feaf in Frame0(int, char*, char*, char*) stack-oob-frames.cc:20 #1 0x41f7ff in Frame1(int, char*, char*) stack-oob-frames.cc:24 #2 0x41f477 in Frame2(int, char*) stack-oob-frames.cc:28 #3 0x41f194 in Frame3(int) stack-oob-frames.cc:32 #4 0x41eee0 in main stack-oob-frames.cc:38 #5 0x7f0c5566f76c (/lib/x86_64-linux-gnu/libc.so.6+0x2176c) #6 0x41eb1c (/usr/local/google/kcc/llvm_cmake/a.out+0x41eb1c) Address 0x7fffa77cf1c5 is located in stack of thread T0 at offset 293 in frame #0 0x41f87f in Frame0(int, char*, char*, char*) stack-oob-frames.cc:12 <<<<<<<<<<<<<< this is new This frame has 6 object(s): [32, 36) 'frame.addr' [96, 104) 'a.addr' [160, 168) 'b.addr' [224, 232) 'c.addr' [288, 292) 's' [352, 360) 'd' git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177724 91177308-0d34-0410-b5e6-96231b3b80d8
brson
pushed a commit
that referenced
this pull request
May 25, 2013
Rather than just splitting the input type and hoping for the best, apply a bit more cleverness. Just splitting the types until the source is legal often leads to an illegal result time, which is then widened and a scalarization step is introduced which leads to truly horrible code generation. With the loop vectorizer, these sorts of operations are much more common, and so it's worth extra effort to do them well. Add a legalization hook for the operands of a TRUNCATE node, which will be encountered after the result type has been legalized, but if the operand type is still illegal. If simple splitting of both types ends up with the result type of each half still being legal, just do that (v16i16 -> v16i8 on ARM, for example). If, however, that would result in an illegal result type (v8i32 -> v8i8 on ARM, for example), we can get more clever with power-two vectors. Specifically, split the input type, but also widen the result element size, then concatenate the halves and truncate again. For example on ARM, To perform a "%res = v8i8 trunc v8i32 %in" we transform to: %inlo = v4i32 extract_subvector %in, 0 %inhi = v4i32 extract_subvector %in, 4 %lo16 = v4i16 trunc v4i32 %inlo %hi16 = v4i16 trunc v4i32 %inhi %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16 %res = v8i8 trunc v8i16 %in16 This allows instruction selection to generate three VMOVN instructions instead of a sequences of moves, stores and loads. Update the ARMTargetTransformInfo to take this improved legalization into account. Consider the simplified IR: define <16 x i8> @test1(<16 x i32>* %ap) { %a = load <16 x i32>* %ap %tmp = trunc <16 x i32> %a to <16 x i8> ret <16 x i8> %tmp } define <8 x i8> @test2(<8 x i32>* %ap) { %a = load <8 x i32>* %ap %tmp = trunc <8 x i32> %a to <8 x i8> ret <8 x i8> %tmp } Previously, we would generate the truly hideous: .syntax unified .section __TEXT,__text,regular,pure_instructions .globl _test1 .align 2 _test1: @ @test1 @ BB#0: push {r7} mov r7, sp sub sp, sp, #20 bic sp, sp, #7 add r1, r0, #48 add r2, r0, #32 vld1.64 {d24, d25}, [r0:128] vld1.64 {d16, d17}, [r1:128] vld1.64 {d18, d19}, [r2:128] add r1, r0, #16 vmovn.i32 d22, q8 vld1.64 {d16, d17}, [r1:128] vmovn.i32 d20, q9 vmovn.i32 d18, q12 vmov.u16 r0, d22[3] strb r0, [sp, #15] vmov.u16 r0, d22[2] strb r0, [sp, #14] vmov.u16 r0, d22[1] strb r0, [sp, #13] vmov.u16 r0, d22[0] vmovn.i32 d16, q8 strb r0, [sp, #12] vmov.u16 r0, d20[3] strb r0, [sp, #11] vmov.u16 r0, d20[2] strb r0, [sp, #10] vmov.u16 r0, d20[1] strb r0, [sp, #9] vmov.u16 r0, d20[0] strb r0, [sp, #8] vmov.u16 r0, d18[3] strb r0, [sp, #3] vmov.u16 r0, d18[2] strb r0, [sp, #2] vmov.u16 r0, d18[1] strb r0, [sp, #1] vmov.u16 r0, d18[0] strb r0, [sp] vmov.u16 r0, d16[3] strb r0, [sp, #7] vmov.u16 r0, d16[2] strb r0, [sp, #6] vmov.u16 r0, d16[1] strb r0, [sp, #5] vmov.u16 r0, d16[0] strb r0, [sp, #4] vldmia sp, {d16, d17} vmov r0, r1, d16 vmov r2, r3, d17 mov sp, r7 pop {r7} bx lr .globl _test2 .align 2 _test2: @ @test2 @ BB#0: push {r7} mov r7, sp sub sp, sp, #12 bic sp, sp, #7 vld1.64 {d16, d17}, [r0:128] add r0, r0, #16 vld1.64 {d20, d21}, [r0:128] vmovn.i32 d18, q8 vmov.u16 r0, d18[3] vmovn.i32 d16, q10 strb r0, [sp, #3] vmov.u16 r0, d18[2] strb r0, [sp, #2] vmov.u16 r0, d18[1] strb r0, [sp, #1] vmov.u16 r0, d18[0] strb r0, [sp] vmov.u16 r0, d16[3] strb r0, [sp, #7] vmov.u16 r0, d16[2] strb r0, [sp, #6] vmov.u16 r0, d16[1] strb r0, [sp, #5] vmov.u16 r0, d16[0] strb r0, [sp, #4] ldm sp, {r0, r1} mov sp, r7 pop {r7} bx lr Now, however, we generate the much more straightforward: .syntax unified .section __TEXT,__text,regular,pure_instructions .globl _test1 .align 2 _test1: @ @test1 @ BB#0: add r1, r0, #48 add r2, r0, #32 vld1.64 {d20, d21}, [r0:128] vld1.64 {d16, d17}, [r1:128] add r1, r0, #16 vld1.64 {d18, d19}, [r2:128] vld1.64 {d22, d23}, [r1:128] vmovn.i32 d17, q8 vmovn.i32 d16, q9 vmovn.i32 d18, q10 vmovn.i32 d19, q11 vmovn.i16 d17, q8 vmovn.i16 d16, q9 vmov r0, r1, d16 vmov r2, r3, d17 bx lr .globl _test2 .align 2 _test2: @ @test2 @ BB#0: vld1.64 {d16, d17}, [r0:128] add r0, r0, #16 vld1.64 {d18, d19}, [r0:128] vmovn.i32 d16, q8 vmovn.i32 d17, q9 vmovn.i16 d16, q8 vmov r0, r1, d16 bx lr git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179989 91177308-0d34-0410-b5e6-96231b3b80d8
alexcrichton
pushed a commit
to alexcrichton/llvm
that referenced
this pull request
Dec 5, 2013
We currently error in clang with: "error: thread-local storage is unsupported for the current target", but we can start to get the llvm level ready. When compiling template<typename T> struct foo { static __declspec(thread) int bar; }; template<typename T> __declspec(therad) int foo<T>::bar; template struct foo<int>; msvc produces SECTION HEADER brson#3 .tls$ name 0 physical address 0 virtual address 4 size of raw data 12F file pointer to raw data (0000012F to 00000132) 0 file pointer to relocation table 0 file pointer to line numbers 0 number of relocations 0 number of line numbers C0301040 flags Initialized Data COMDAT; sym= "public: static int foo<int>::bar" (?bar@?$foo@H@@2ha) 4 byte align Read Write gcc produces a ".data$__emutls_v.<symbol>" for the testcase with __declspec(thread) replaced with thread_local. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195849 91177308-0d34-0410-b5e6-96231b3b80d8
alexcrichton
pushed a commit
to alexcrichton/llvm
that referenced
this pull request
Mar 27, 2014
…ify-libcall optimize a call to a llvm intrinsic to something that invovles a call to a C library call, make sure it sets the right calling convention on the call. e.g. extern double pow(double, double); double t(double x) { return pow(10, x); } Compiles to something like this for AAPCS-VFP: define arm_aapcs_vfpcc double @t(double %x) #0 { entry: %0 = call double @llvm.pow.f64(double 1.000000e+01, double %x) ret double %0 } declare double @llvm.pow.f64(double, double) brson#1 Simplify libcall (part of instcombine) will turn the above into: define arm_aapcs_vfpcc double @t(double %x) #0 { entry: %__exp10 = call double @__exp10(double %x) brson#1 ret double %__exp10 } declare double @__exp10(double) The pre-instcombine code works because calls to LLVM builtins are special. Instruction selection will chose the right calling convention for the call. However, the code after instcombine is wrong. The call to __exp10 will use the C calling convention. I can think of 3 options to fix this. 1. Make "C" calling convention just work since the target should know what CC is being used. This doesn't work because each function can use different CC with the "pcs" attribute. 2. Have Clang add the right CC keyword on the calls to LLVM builtin. This will work but it doesn't match the LLVM IR specification which states these are "Standard C Library Intrinsics". 3. Fix simplify libcall so the resulting calls to the C routines will have the proper CC keyword. e.g. %__exp10 = call arm_aapcs_vfpcc double @__exp10(double %x) brson#1 This works and is the solution I implemented here. Both solutions brson#2 and brson#3 would work. After carefully considering the pros and cons, I decided to implement brson#3 for the following reasons. 1. It doesn't change the "spec" of the intrinsics. 2. It's a self-contained fix. There are a couple of potential downsides. 1. There could be other places in the optimizer that is broken in the same way that's not addressed by this. 2. There could be other calling conventions that need to be propagated by simplify-libcall that's not handled. But for now, this is the fix that I'm most comfortable with. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203488 91177308-0d34-0410-b5e6-96231b3b80d8
luqmana
pushed a commit
to luqmana/llvm
that referenced
this pull request
May 20, 2014
The canonical form for the extended addressing mode (e.g., "[x1, w2, uxtw brson#3]" is for the MCInst to have the second register be the full 64-bit GPR64 register class. The instruction printer cleans up the output for display to show the 32-bit register instead, per the specification. This simplifies 205893 now that the aliasing is handled in the printer in 206495 so that the codegen path and the disassembler path give the same MCInst form. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206797 91177308-0d34-0410-b5e6-96231b3b80d8
luqmana
pushed a commit
to luqmana/llvm
that referenced
this pull request
May 20, 2014
For pattern like ((x >> C1) & Mask) << C2, DAG combiner may convert it into (x >> (C1-C2)) & (Mask << C2), which makes pattern matching of ubfx more difficult. For example: Given %shr = lshr i64 %x, 4 %and = and i64 %shr, 15 %arrayidx = getelementptr inbounds [8 x [64 x i64]]* @arr, i64 0, %i64 2, i64 %and %0 = load i64* %arrayidx With current shift folding, it takes 3 instrs to compute base address: lsr x8, x0, #1 and x8, x8, #0x78 add x8, x9, x8 If using ubfx, it only needs 2 instrs: ubfx x8, x0, brson#4, brson#4 add x8, x9, x8, lsl brson#3 This fixes bug 19589 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207702 91177308-0d34-0410-b5e6-96231b3b80d8
luqmana
pushed a commit
to luqmana/llvm
that referenced
this pull request
Sep 9, 2014
FastISel didn't take much advantage of the different addressing modes available to it on AArch64. This commit allows the ComputeAddress method to recognize more addressing modes that allows shifts and sign-/zero-extensions to be folded into the memory operation itself. For Example: lsl x1, x1, brson#3 --> ldr x0, [x0, x1, lsl brson#3] ldr x0, [x0, x1] sxtw x1, w1 lsl x1, x1, brson#3 --> ldr x0, [x0, x1, sxtw brson#3] ldr x0, [x0, x1] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215597 91177308-0d34-0410-b5e6-96231b3b80d8
luqmana
pushed a commit
to luqmana/llvm
that referenced
this pull request
Sep 9, 2014
…15597). Note: This was originally reverted to track down a buildbot error. Reapply without any modifications. Original commit message: FastISel didn't take much advantage of the different addressing modes available to it on AArch64. This commit allows the ComputeAddress method to recognize more addressing modes that allows shifts and sign-/zero-extensions to be folded into the memory operation itself. For Example: lsl x1, x1, brson#3 --> ldr x0, [x0, x1, lsl brson#3] ldr x0, [x0, x1] sxtw x1, w1 lsl x1, x1, brson#3 --> ldr x0, [x0, x1, sxtw brson#3] ldr x0, [x0, x1] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216013 91177308-0d34-0410-b5e6-96231b3b80d8
alexcrichton
pushed a commit
to alexcrichton/llvm
that referenced
this pull request
Apr 27, 2018
Revert r330413: "[SSAUpdaterBulk] Use SmallVector instead of DenseMap for storing rewrites." Revert r330403 "Reapply "[PR16756] Use SSAUpdaterBulk in JumpThreading." one more time." r330403 commit seems to crash clang during our integrate while doing PGO build with the following stacktrace: brson#2 llvm::SSAUpdaterBulk::RewriteAllUses(llvm::DominatorTree*, llvm::SmallVectorImpl<llvm::PHINode*>*) brson#3 llvm::JumpThreadingPass::ThreadEdge(llvm::BasicBlock*, llvm::SmallVectorImpl<llvm::BasicBlock*> const&, llvm::BasicBlock*) brson#4 llvm::JumpThreadingPass::ProcessThreadableEdges(llvm::Value*, llvm::BasicBlock*, llvm::jumpthreading::ConstantPreference, llvm::Instruction*) brson#5 llvm::JumpThreadingPass::ProcessBlock(llvm::BasicBlock*) The crash happens while compiling 'lib/Analysis/CallGraph.cpp'. r3340413 is reverted due to conflicting changes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@330416 91177308-0d34-0410-b5e6-96231b3b80d8
alexcrichton
pushed a commit
to alexcrichton/llvm
that referenced
this pull request
May 22, 2018
Patch brson#3 from VPlan Outer Loop Vectorization Patch Series brson#1 (RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). Expected to be NFC for the current inner loop vectorization path. It introduces the basic algorithm to build the VPlan plain CFG (single-level CFG, no hierarchical CFG (H-CFG), yet) in the VPlan-native vectorization path using VPInstructions. It includes: - VPlanHCFGBuilder: Main class to build the VPlan H-CFG (plain CFG without nested regions, for now). - VPlanVerifier: Main class with utilities to check the consistency of a H-CFG. - VPlanBlockUtils: Main class with utilities to manipulate VPBlockBases in VPlan. Reviewers: rengolin, fhahn, mkuper, mssimpso, a.elovikov, hfinkel, aprantl. Differential Revision: https://reviews.llvm.org/D44338 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@332654 91177308-0d34-0410-b5e6-96231b3b80d8
alexcrichton
pushed a commit
to alexcrichton/llvm
that referenced
this pull request
Jun 29, 2018
This patch adds a custom trunc store lowering for v4i8 vector types. Since there is not v.4b register, the v4i8 is promoted to v4i16 (v.4h) and default action for v4i8 is to extract each element and issue 4 byte stores. A better strategy would be to extended the promoted v4i16 to v8i16 (with undef elements) and extract and store the word lane which represents the v4i8 subvectores. The construction: define void @foo(<4 x i16> %x, i8* nocapture %p) { %0 = trunc <4 x i16> %x to <4 x i8> %1 = bitcast i8* %p to <4 x i8>* store <4 x i8> %0, <4 x i8>* %1, align 4, !tbaa !2 ret void } Can be optimized from: umov w8, v0.h[3] umov w9, v0.h[2] umov w10, v0.h[1] umov w11, v0.h[0] strb w8, [x0, brson#3] strb w9, [x0, brson#2] strb w10, [x0, brson#1] strb w11, [x0] ret To: xtn v0.8b, v0.8h str s0, [x0] ret The patch also adjust the memory cost for autovectorization, so the C code: void foo (const int *src, int width, unsigned char *dst) { for (int i = 0; i < width; i++) *dst++ = *src++; } can be vectorized to: .LBB0_4: // %vector.body // =>This Inner Loop Header: Depth=1 ldr q0, [x0], #16 subs x12, x12, brson#4 // =4 xtn v0.4h, v0.4s xtn v0.8b, v0.8h st1 { v0.s }[0], [x2], brson#4 b.ne .LBB0_4 Instead of byte operations. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335735 91177308-0d34-0410-b5e6-96231b3b80d8
alexcrichton
pushed a commit
to alexcrichton/llvm
that referenced
this pull request
Aug 15, 2018
…d VPlan for tests." Memory leaks in tests. http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/6289/steps/check-llvm%20asan/logs/stdio Direct leak of 192 byte(s) in 1 object(s) allocated from: #0 0x554ea8 in operator new(unsigned long) /b/sanitizer-x86_64-linux-bootstrap/build/llvm/projects/compiler-rt/lib/asan/asan_new_delete.cc:106 brson#1 0x56cef1 in llvm::VPlanTestBase::doAnalysis(llvm::Function&) /b/sanitizer-x86_64-linux-bootstrap/build/llvm/unittests/Transforms/Vectorize/VPlanTestBase.h:53:14 brson#2 0x56bec4 in llvm::VPlanTestBase::buildHCFG(llvm::BasicBlock*) /b/sanitizer-x86_64-linux-bootstrap/build/llvm/unittests/Transforms/Vectorize/VPlanTestBase.h:57:3 brson#3 0x571f1e in llvm::(anonymous namespace)::VPlanHCFGTest_testVPInstructionToVPRecipesInner_Test::TestBody() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/unittests/Transforms/Vectorize/VPlanHCFGTest.cpp:119:15 brson#4 0xed2291 in testing::Test::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc brson#5 0xed44c8 in testing::TestInfo::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc:2656:11 brson#6 0xed5890 in testing::TestCase::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc:2774:28 brson#7 0xef3634 in testing::internal::UnitTestImpl::RunAllTests() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc:4649:43 brson#8 0xef27e0 in testing::UnitTest::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc #9 0xebbc23 in RUN_ALL_TESTS /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/include/gtest/gtest.h:2233:46 #10 0xebbc23 in main /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/UnitTestMain/TestMain.cpp:51 #11 0x7f65569592e0 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x202e0) and more. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336718 91177308-0d34-0410-b5e6-96231b3b80d8
alexcrichton
pushed a commit
to alexcrichton/llvm
that referenced
this pull request
Aug 15, 2018
…ering" This reverts commit r337021. WARNING: MemorySanitizer: use-of-uninitialized-value #0 0x1415cd65 in void write_signed<long>(llvm::raw_ostream&, long, unsigned long, llvm::IntegerStyle) /code/llvm-project/llvm/lib/Support/NativeFormatting.cpp:95:7 brson#1 0x1415c900 in llvm::write_integer(llvm::raw_ostream&, long, unsigned long, llvm::IntegerStyle) /code/llvm-project/llvm/lib/Support/NativeFormatting.cpp:121:3 brson#2 0x1472357f in llvm::raw_ostream::operator<<(long) /code/llvm-project/llvm/lib/Support/raw_ostream.cpp:117:3 brson#3 0x13bb9d4 in llvm::raw_ostream::operator<<(int) /code/llvm-project/llvm/include/llvm/Support/raw_ostream.h:210:18 brson#4 0x3c2bc18 in void printField<unsigned int, &(amd_kernel_code_s::amd_kernel_code_version_major)>(llvm::StringRef, amd_kernel_code_s const&, llvm::raw_ostream&) /code/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDKernelCodeTUtils.cpp:78:23 brson#5 0x3c250ba in llvm::printAmdKernelCodeField(amd_kernel_code_s const&, int, llvm::raw_ostream&) /code/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDKernelCodeTUtils.cpp:104:5 brson#6 0x3c27ca3 in llvm::dumpAmdKernelCode(amd_kernel_code_s const*, llvm::raw_ostream&, char const*) /code/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDKernelCodeTUtils.cpp:113:5 brson#7 0x3a46e6c in llvm::AMDGPUTargetAsmStreamer::EmitAMDKernelCodeT(amd_kernel_code_s const&) /code/llvm-project/llvm/lib/Target/AMDGPU/MCTargetDesc/AMDGPUTargetStreamer.cpp:161:3 brson#8 0xd371e4 in llvm::AMDGPUAsmPrinter::EmitFunctionBodyStart() /code/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp:204:26 [...] Uninitialized value was created by an allocation of 'KernelCode' in the stack frame of function '_ZN4llvm16AMDGPUAsmPrinter21EmitFunctionBodyStartEv' #0 0xd36650 in llvm::AMDGPUAsmPrinter::EmitFunctionBodyStart() /code/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp:192 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337079 91177308-0d34-0410-b5e6-96231b3b80d8
alexcrichton
pushed a commit
to alexcrichton/llvm
that referenced
this pull request
Aug 15, 2018
A DAG-NOT-DAG is a CHECK-DAG group, X, followed by a CHECK-NOT group, N, followed by a CHECK-DAG group, Y. Let y be the initial directive of Y. This patch makes the following changes to the behavior: 1. Directives in N can no longer match within part of Y's match range just because y happens not to be the earliest match from Y. Specifically, this patch withdraws N's search range end from y's match range start to Y's match range start. 2. y can no longer match within X's match range, where a y match produced a reordering complaint, which is thus no longer possible. Specifically, this patch withdraws y's search range start from X's permitted range start to X's match range end, which was already the search range start for other members of Y. Both of these changes can only increase the number of test passes: brson#1 constrains the ability of CHECK-NOTs to match, and brson#2 expands the ability of CHECK-DAGs to match without complaints. These changes are based on discussions at: <http://lists.llvm.org/pipermail/llvm-dev/2018-May/123550.html> <https://reviews.llvm.org/D47106> which conclude that: 1. These changes simplify the FileCheck conceptual model. First, it makes search ranges for DAG-NOT-DAG more consistent with other cases. Second, it was confusing that y was treated differently from the rest of Y. 2. These changes add theoretical use cases for DAG-NOT-DAG that had no obvious means to be expressed otherwise. We can justify the first half of this assertion with the observation that these changes can only increase the number of test passes. 3. Reordering detection for DAG-NOT-DAG had no obvious real benefit. We don't have evidence from real uses cases to help us debate conclusions brson#2 and brson#3, but brson#1 at least seems intuitive. Reviewed By: probinson Differential Revision: https://reviews.llvm.org/D48986 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337605 91177308-0d34-0410-b5e6-96231b3b80d8
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Heya Brson! I was getting annoyed that rust-lang/rust#3142 kept popping up, and it turns out this has been fixed in llvm HEAD. We need a couple patches in rust before we can use this though. I'll link this issue with the rust one once I upload it.