forked from chapuni/llvm
-
Notifications
You must be signed in to change notification settings - Fork 10
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Android splitstack implementation #6
Closed
Closed
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
…n pointers in address space 1
…o avoid breaking call sequences
When we alloca a struct (containing a pointer), we want the root to be the pointer inside the struct, not the struct itself. Therefore, we can't strip the getElementPtr instruction, even if the parameters are all zero.
New algorithm is based on LLVM's existing LiveVariables pass, which among other things does not assume the input CFG is reducible.
I accidentally left out updating compiler-rt from my last patch, this now includes it.
Not presently working, uses a lot of memory.
brson
pushed a commit
that referenced
this pull request
Mar 28, 2013
std::string to a StringRef. Moreover, the method being called accepts a Twine to simplify these patterns. Fixes this ASan failure: ==6312== ERROR: AddressSanitizer: heap-use-after-free on address 0x7fd558b1af58 at pc 0xcb7529 bp 0x7fffff572080 sp 0x7fffff572078 READ of size 1 at 0x7fd558b1af58 thread T0 #0 0xcb7528 .../llvm/include/llvm/ADT/StringRef.h:192 llvm::StringRef::operator[]() #1 0x1d53c0a .../llvm/include/llvm/ADT/StringExtras.h:128 llvm::HashString() #2 0x1d53878 .../llvm/lib/Support/StringMap.cpp:64 llvm::StringMapImpl::LookupBucketFor() #3 0x1b6872f .../llvm/include/llvm/ADT/StringMap.h:352 llvm::StringMap<>::GetOrCreateValue<>() #4 0x1b61836 .../llvm/lib/MC/MCContext.cpp:109 llvm::MCContext::GetOrCreateSymbol() #5 0xe9fd47 .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:154 (anonymous namespace)::ARMELFStreamer::EmitMappingSymbol() #6 0xea01dd .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:133 (anonymous namespace)::ARMELFStreamer::EmitDataMappingSymbol() #7 0xe9f78b .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:91 (anonymous namespace)::ARMELFStreamer::EmitBytes() #8 0x1b15d82 .../llvm/lib/MC/MCStreamer.cpp:89 llvm::MCStreamer::EmitIntValue() #9 0xcc0f9b .../llvm/lib/Target/ARM/ARMAsmPrinter.cpp:713 llvm::ARMAsmPrinter::emitAttributes() #10 0xcc0d44 .../llvm/lib/Target/ARM/ARMAsmPrinter.cpp:632 llvm::ARMAsmPrinter::EmitStartOfAsmFile() #11 0x14692ad .../llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp:162 llvm::AsmPrinter::doInitialization() #12 0x1bc4677 .../llvm/lib/VMCore/PassManager.cpp:1561 llvm::FPPassManager::doInitialization() #13 0x1bc4990 .../llvm/lib/VMCore/PassManager.cpp:1595 llvm::MPPassManager::runOnModule() #14 0x1bc55e5 .../llvm/lib/VMCore/PassManager.cpp:1705 llvm::PassManagerImpl::run() #15 0x1bc5878 .../llvm/lib/VMCore/PassManager.cpp:1740 llvm::PassManager::run() #16 0xc3954d .../llvm/tools/llc/llc.cpp:378 compileModule() #17 0xc38001 .../llvm/tools/llc/llc.cpp:194 main #18 0x7fd557d6a11c __libc_start_main 0x7fd558b1af58 is located 24 bytes inside of 29-byte region [0x7fd558b1af40,0x7fd558b1af5d) freed by thread T0 here: #0 0xc337da .../llvm/projects/compiler-rt/lib/asan/asan_new_delete.cc:56 operator delete() #1 0x1ee9cef .../libstdc++-v3/include/bits/basic_string.h:535 std::string::~string() #2 0xea01dd .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:133 (anonymous namespace)::ARMELFStreamer::EmitDataMappingSymbol() #3 0xe9f78b .../llvm/lib/Target/ARM/MCTargetDesc/ARMELFStreamer.cpp:91 (anonymous namespace)::ARMELFStreamer::EmitBytes() #4 0x1b15d82 .../llvm/lib/MC/MCStreamer.cpp:89 llvm::MCStreamer::EmitIntValue() #5 0xcc0f9b .../llvm/lib/Target/ARM/ARMAsmPrinter.cpp:713 llvm::ARMAsmPrinter::emitAttributes() #6 0xcc0d44 .../llvm/lib/Target/ARM/ARMAsmPrinter.cpp:632 llvm::ARMAsmPrinter::EmitStartOfAsmFile() #7 0x14692ad .../llvm/lib/CodeGen/AsmPrinter/AsmPrinter.cpp:162 llvm::AsmPrinter::doInitialization() #8 0x1bc4677 .../llvm/lib/VMCore/PassManager.cpp:1561 llvm::FPPassManager::doInitialization() #9 0x1bc4990 .../llvm/lib/VMCore/PassManager.cpp:1595 llvm::MPPassManager::runOnModule() #10 0x1bc55e5 .../llvm/lib/VMCore/PassManager.cpp:1705 llvm::PassManagerImpl::run() #11 0x1bc5878 .../llvm/lib/VMCore/PassManager.cpp:1740 llvm::PassManager::run() #12 0xc3954d .../llvm/tools/llc/llc.cpp:378 compileModule() #13 0xc38001 .../llvm/tools/llc/llc.cpp:194 main #14 0x7fd557d6a11c __libc_start_main git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169668 91177308-0d34-0410-b5e6-96231b3b80d8
brson
pushed a commit
that referenced
this pull request
Mar 28, 2013
Before: the function name was stored by the compiler as a constant string and the run-time was printing it. Now: the PC is stored instead and the run-time prints the full symbolized frame. This adds a couple of instructions into every function with non-empty stack frame, but also reduces the binary size because we store less strings (I saw 2% size reduction). This change bumps the asan ABI version to v3. llvm part. Example of report (now): ==31711==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fffa77cf1c5 at pc 0x41feb0 bp 0x7fffa77cefb0 sp 0x7fffa77cefa8 READ of size 1 at 0x7fffa77cf1c5 thread T0 #0 0x41feaf in Frame0(int, char*, char*, char*) stack-oob-frames.cc:20 #1 0x41f7ff in Frame1(int, char*, char*) stack-oob-frames.cc:24 #2 0x41f477 in Frame2(int, char*) stack-oob-frames.cc:28 #3 0x41f194 in Frame3(int) stack-oob-frames.cc:32 #4 0x41eee0 in main stack-oob-frames.cc:38 #5 0x7f0c5566f76c (/lib/x86_64-linux-gnu/libc.so.6+0x2176c) #6 0x41eb1c (/usr/local/google/kcc/llvm_cmake/a.out+0x41eb1c) Address 0x7fffa77cf1c5 is located in stack of thread T0 at offset 293 in frame #0 0x41f87f in Frame0(int, char*, char*, char*) stack-oob-frames.cc:12 <<<<<<<<<<<<<< this is new This frame has 6 object(s): [32, 36) 'frame.addr' [96, 104) 'a.addr' [160, 168) 'b.addr' [224, 232) 'c.addr' [288, 292) 's' [352, 360) 'd' git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177724 91177308-0d34-0410-b5e6-96231b3b80d8
I believe everything relevant here is merged. |
brson
pushed a commit
that referenced
this pull request
May 25, 2013
Rather than just splitting the input type and hoping for the best, apply a bit more cleverness. Just splitting the types until the source is legal often leads to an illegal result time, which is then widened and a scalarization step is introduced which leads to truly horrible code generation. With the loop vectorizer, these sorts of operations are much more common, and so it's worth extra effort to do them well. Add a legalization hook for the operands of a TRUNCATE node, which will be encountered after the result type has been legalized, but if the operand type is still illegal. If simple splitting of both types ends up with the result type of each half still being legal, just do that (v16i16 -> v16i8 on ARM, for example). If, however, that would result in an illegal result type (v8i32 -> v8i8 on ARM, for example), we can get more clever with power-two vectors. Specifically, split the input type, but also widen the result element size, then concatenate the halves and truncate again. For example on ARM, To perform a "%res = v8i8 trunc v8i32 %in" we transform to: %inlo = v4i32 extract_subvector %in, 0 %inhi = v4i32 extract_subvector %in, 4 %lo16 = v4i16 trunc v4i32 %inlo %hi16 = v4i16 trunc v4i32 %inhi %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16 %res = v8i8 trunc v8i16 %in16 This allows instruction selection to generate three VMOVN instructions instead of a sequences of moves, stores and loads. Update the ARMTargetTransformInfo to take this improved legalization into account. Consider the simplified IR: define <16 x i8> @test1(<16 x i32>* %ap) { %a = load <16 x i32>* %ap %tmp = trunc <16 x i32> %a to <16 x i8> ret <16 x i8> %tmp } define <8 x i8> @test2(<8 x i32>* %ap) { %a = load <8 x i32>* %ap %tmp = trunc <8 x i32> %a to <8 x i8> ret <8 x i8> %tmp } Previously, we would generate the truly hideous: .syntax unified .section __TEXT,__text,regular,pure_instructions .globl _test1 .align 2 _test1: @ @test1 @ BB#0: push {r7} mov r7, sp sub sp, sp, #20 bic sp, sp, #7 add r1, r0, #48 add r2, r0, #32 vld1.64 {d24, d25}, [r0:128] vld1.64 {d16, d17}, [r1:128] vld1.64 {d18, d19}, [r2:128] add r1, r0, #16 vmovn.i32 d22, q8 vld1.64 {d16, d17}, [r1:128] vmovn.i32 d20, q9 vmovn.i32 d18, q12 vmov.u16 r0, d22[3] strb r0, [sp, #15] vmov.u16 r0, d22[2] strb r0, [sp, #14] vmov.u16 r0, d22[1] strb r0, [sp, #13] vmov.u16 r0, d22[0] vmovn.i32 d16, q8 strb r0, [sp, #12] vmov.u16 r0, d20[3] strb r0, [sp, #11] vmov.u16 r0, d20[2] strb r0, [sp, #10] vmov.u16 r0, d20[1] strb r0, [sp, #9] vmov.u16 r0, d20[0] strb r0, [sp, #8] vmov.u16 r0, d18[3] strb r0, [sp, #3] vmov.u16 r0, d18[2] strb r0, [sp, #2] vmov.u16 r0, d18[1] strb r0, [sp, #1] vmov.u16 r0, d18[0] strb r0, [sp] vmov.u16 r0, d16[3] strb r0, [sp, #7] vmov.u16 r0, d16[2] strb r0, [sp, #6] vmov.u16 r0, d16[1] strb r0, [sp, #5] vmov.u16 r0, d16[0] strb r0, [sp, #4] vldmia sp, {d16, d17} vmov r0, r1, d16 vmov r2, r3, d17 mov sp, r7 pop {r7} bx lr .globl _test2 .align 2 _test2: @ @test2 @ BB#0: push {r7} mov r7, sp sub sp, sp, #12 bic sp, sp, #7 vld1.64 {d16, d17}, [r0:128] add r0, r0, #16 vld1.64 {d20, d21}, [r0:128] vmovn.i32 d18, q8 vmov.u16 r0, d18[3] vmovn.i32 d16, q10 strb r0, [sp, #3] vmov.u16 r0, d18[2] strb r0, [sp, #2] vmov.u16 r0, d18[1] strb r0, [sp, #1] vmov.u16 r0, d18[0] strb r0, [sp] vmov.u16 r0, d16[3] strb r0, [sp, #7] vmov.u16 r0, d16[2] strb r0, [sp, #6] vmov.u16 r0, d16[1] strb r0, [sp, #5] vmov.u16 r0, d16[0] strb r0, [sp, #4] ldm sp, {r0, r1} mov sp, r7 pop {r7} bx lr Now, however, we generate the much more straightforward: .syntax unified .section __TEXT,__text,regular,pure_instructions .globl _test1 .align 2 _test1: @ @test1 @ BB#0: add r1, r0, #48 add r2, r0, #32 vld1.64 {d20, d21}, [r0:128] vld1.64 {d16, d17}, [r1:128] add r1, r0, #16 vld1.64 {d18, d19}, [r2:128] vld1.64 {d22, d23}, [r1:128] vmovn.i32 d17, q8 vmovn.i32 d16, q9 vmovn.i32 d18, q10 vmovn.i32 d19, q11 vmovn.i16 d17, q8 vmovn.i16 d16, q9 vmov r0, r1, d16 vmov r2, r3, d17 bx lr .globl _test2 .align 2 _test2: @ @test2 @ BB#0: vld1.64 {d16, d17}, [r0:128] add r0, r0, #16 vld1.64 {d18, d19}, [r0:128] vmovn.i32 d16, q8 vmovn.i32 d17, q9 vmovn.i16 d16, q8 vmov r0, r1, d16 bx lr git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179989 91177308-0d34-0410-b5e6-96231b3b80d8
alexcrichton
pushed a commit
to alexcrichton/llvm
that referenced
this pull request
Mar 27, 2014
This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because brson#6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
alexcrichton
pushed a commit
to alexcrichton/llvm
that referenced
this pull request
Aug 15, 2018
…d VPlan for tests." Memory leaks in tests. http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/6289/steps/check-llvm%20asan/logs/stdio Direct leak of 192 byte(s) in 1 object(s) allocated from: #0 0x554ea8 in operator new(unsigned long) /b/sanitizer-x86_64-linux-bootstrap/build/llvm/projects/compiler-rt/lib/asan/asan_new_delete.cc:106 brson#1 0x56cef1 in llvm::VPlanTestBase::doAnalysis(llvm::Function&) /b/sanitizer-x86_64-linux-bootstrap/build/llvm/unittests/Transforms/Vectorize/VPlanTestBase.h:53:14 brson#2 0x56bec4 in llvm::VPlanTestBase::buildHCFG(llvm::BasicBlock*) /b/sanitizer-x86_64-linux-bootstrap/build/llvm/unittests/Transforms/Vectorize/VPlanTestBase.h:57:3 brson#3 0x571f1e in llvm::(anonymous namespace)::VPlanHCFGTest_testVPInstructionToVPRecipesInner_Test::TestBody() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/unittests/Transforms/Vectorize/VPlanHCFGTest.cpp:119:15 brson#4 0xed2291 in testing::Test::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc brson#5 0xed44c8 in testing::TestInfo::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc:2656:11 brson#6 0xed5890 in testing::TestCase::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc:2774:28 brson#7 0xef3634 in testing::internal::UnitTestImpl::RunAllTests() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc:4649:43 brson#8 0xef27e0 in testing::UnitTest::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc #9 0xebbc23 in RUN_ALL_TESTS /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/include/gtest/gtest.h:2233:46 #10 0xebbc23 in main /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/UnitTestMain/TestMain.cpp:51 #11 0x7f65569592e0 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x202e0) and more. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336718 91177308-0d34-0410-b5e6-96231b3b80d8
alexcrichton
pushed a commit
to alexcrichton/llvm
that referenced
this pull request
Aug 15, 2018
…ering" This reverts commit r337021. WARNING: MemorySanitizer: use-of-uninitialized-value #0 0x1415cd65 in void write_signed<long>(llvm::raw_ostream&, long, unsigned long, llvm::IntegerStyle) /code/llvm-project/llvm/lib/Support/NativeFormatting.cpp:95:7 brson#1 0x1415c900 in llvm::write_integer(llvm::raw_ostream&, long, unsigned long, llvm::IntegerStyle) /code/llvm-project/llvm/lib/Support/NativeFormatting.cpp:121:3 brson#2 0x1472357f in llvm::raw_ostream::operator<<(long) /code/llvm-project/llvm/lib/Support/raw_ostream.cpp:117:3 brson#3 0x13bb9d4 in llvm::raw_ostream::operator<<(int) /code/llvm-project/llvm/include/llvm/Support/raw_ostream.h:210:18 brson#4 0x3c2bc18 in void printField<unsigned int, &(amd_kernel_code_s::amd_kernel_code_version_major)>(llvm::StringRef, amd_kernel_code_s const&, llvm::raw_ostream&) /code/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDKernelCodeTUtils.cpp:78:23 brson#5 0x3c250ba in llvm::printAmdKernelCodeField(amd_kernel_code_s const&, int, llvm::raw_ostream&) /code/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDKernelCodeTUtils.cpp:104:5 brson#6 0x3c27ca3 in llvm::dumpAmdKernelCode(amd_kernel_code_s const*, llvm::raw_ostream&, char const*) /code/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDKernelCodeTUtils.cpp:113:5 brson#7 0x3a46e6c in llvm::AMDGPUTargetAsmStreamer::EmitAMDKernelCodeT(amd_kernel_code_s const&) /code/llvm-project/llvm/lib/Target/AMDGPU/MCTargetDesc/AMDGPUTargetStreamer.cpp:161:3 brson#8 0xd371e4 in llvm::AMDGPUAsmPrinter::EmitFunctionBodyStart() /code/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp:204:26 [...] Uninitialized value was created by an allocation of 'KernelCode' in the stack frame of function '_ZN4llvm16AMDGPUAsmPrinter21EmitFunctionBodyStartEv' #0 0xd36650 in llvm::AMDGPUAsmPrinter::EmitFunctionBodyStart() /code/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp:192 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@337079 91177308-0d34-0410-b5e6-96231b3b80d8
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This is a modification for rust-lang/rust#5327