-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
192 lines (164 loc) · 8.05 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import tensorflow as tf
import numpy as np
import random
import drink_data_reader as reader
class Model(object):
def __init__(self,
source_vocab_size,
target_vocab_size,
buckets,
size,
num_layers,
max_gradient_norm,
batch_size,
learning_rate,
learning_rate_decay,
num_samples = 512,
forward_only = False,
dtype = tf.float32):
self.source_vocab_size = source_vocab_size
self.target_vocab_size = target_vocab_size
self.buckets = buckets
self.batch_size = batch_size
self.learning_rate = tf.Variable(float(learning_rate), trainable=False, dtype=dtype)
self.learning_rate_decay = self.learning_rate.assign(self.learning_rate * learning_rate_decay)
self.global_step = tf.Variable(0, trainable=False)
output_projection = None
softmax_loss_function = None
if num_samples > 0 and num_samples < self.target_vocab_size:
w_t = tf.get_variable('proj_w', [self.target_vocab_size, size], dtype=dtype)
w = tf.transpose(w_t)
b = tf.get_variable('proj_b', [self.target_vocab_size], dtype=dtype)
output_projection = (w, b)
def sampled_loss(labels, logits):
labels = tf.reshape(labels, [-1, 1])
local_w_t = tf.cast(w_t, tf.float32)
local_b = tf.cast(b, tf.float32)
local_inputs = tf.cast(logits, tf.float32)
return tf.cast(
tf.nn.sampled_softmax_loss(
weights=local_w_t,
biases=local_b,
labels = labels,
inputs = local_inputs,
num_sampled = num_samples,
num_classes=self.target_vocab_size),
dtype)
softmax_loss_function = sampled_loss
def seq2seq_f(encoder_inputs, decoder_inputs, do_decode):
if num_layers > 1:
cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.GRUCell(size) for _ in range(num_layers)])
else:
cell = tf.contrib.rnn.GRUCell(size)
return tf.contrib.legacy_seq2seq.embedding_attention_seq2seq(
encoder_inputs,
decoder_inputs,
cell,
num_encoder_symbols=source_vocab_size,
num_decoder_symbols=target_vocab_size,
embedding_size=size,
output_projection=output_projection,
feed_previous=do_decode,
dtype=dtype
)
self.encoder_inputs = []
self.decoder_inputs = []
self.target_weights = []
for i in range(buckets[-1][0]):
self.encoder_inputs.append(tf.placeholder(tf.int32, shape=[None], name="encoder{0}".format(i)))
for i in range(buckets[-1][0] + 1):
self.decoder_inputs.append(tf.placeholder(tf.int32, shape=[None], name="decoder{0}".format(i)))
self.target_weights.append(tf.placeholder(dtype, shape=[None], name="weight{0}".format(i)))
targets = [self.decoder_inputs[i + 1] for i in range(len(self.decoder_inputs) - 1)]
if forward_only:
self.outputs, self.losses = tf.contrib.legacy_seq2seq.model_with_buckets(
self.encoder_inputs, self.decoder_inputs, targets, self.target_weights, buckets,
lambda x, y: seq2seq_f(x, y, True),
softmax_loss_function=softmax_loss_function
)
if output_projection is not None:
for b in range(len(buckets)):
self.outputs[b] = [
tf.matmul(output, output_projection[0]) + output_projection[1]
for output in self.outputs[b]
]
else:
self.outputs, self.losses = tf.contrib.legacy_seq2seq.model_with_buckets(
self.encoder_inputs,
self.decoder_inputs,
targets,
self.target_weights,
buckets,
lambda x, y: seq2seq_f(x, y, False),
softmax_loss_function=softmax_loss_function
)
params = tf.trainable_variables()
if not forward_only:
self.gradient_norms = []
self.updates = []
opt = tf.train.GradientDescentOptimizer(self.learning_rate)
for b in range(len(buckets)):
gradients = tf.gradients(self.losses[b], params)
clipped_gradients, norm = tf.clip_by_global_norm(gradients, max_gradient_norm)
self.gradient_norms.append(norm)
self.updates.append(opt.apply_gradients(
zip(clipped_gradients, params), global_step=self.global_step
))
self.saver = tf.train.Saver(tf.global_variables())
def step(self, session, encoder_inputs, decoder_inputs, target_weights, bucket_id, forward_only):
encoder_size, decoder_size = self.buckets[bucket_id]
if len(encoder_inputs) != encoder_size:
raise ValueError("Encoder input must be same size as bucket")
if len(decoder_inputs) != decoder_size:
raise ValueError("Decoder input must be same size as bucket")
if len(target_weights) != decoder_size:
raise ValueError("weights size must be same size as bucket")
input_feed = {}
for l in range(encoder_size):
input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
for l in range(decoder_size):
input_feed[self.decoder_inputs[l].name] = decoder_inputs[l]
input_feed[self.target_weights[l].name] = target_weights[l]
last_target = self.decoder_inputs[decoder_size].name
input_feed[last_target] = np.zeros([self.batch_size], dtype=np.int32)
if not forward_only:
output_feed = [self.updates[bucket_id],
self.gradient_norms[bucket_id],
self.losses[bucket_id]]
else:
output_feed = [self.losses[bucket_id]]
for l in range(decoder_size):
output_feed.append(self.outputs[bucket_id][l])
outputs = session.run(output_feed, input_feed)
if not forward_only:
return outputs[1], outputs[2], None
else:
return None, outputs[0], outputs[1:]
def get_batch(self, data, bucket_id):
encoder_size, decoder_size = self.buckets[bucket_id]
encoder_inputs, decoder_inputs = [], []
for _ in range(self.batch_size):
encoder_input, decoder_input = random.choice(data[bucket_id])
encoder_pad = [reader._PAD_ID] * (encoder_size - len(encoder_input))
encoder_inputs.append(list(reversed(encoder_input + encoder_pad)))
decoder_pad_size = decoder_size - len(decoder_input) - 1
decoder_inputs.append([reader._GO_ID] + decoder_input + [reader._PAD_ID] * decoder_pad_size)
batch_encoder_inputs, batch_decoder_inputs, batch_weights = [], [], []
for ind in range(encoder_size):
batch_encoder_inputs.append(
np.array([encoder_inputs[batch_idx][ind]
for batch_idx in range(self.batch_size)], dtype=np.int32)
)
for ind in range(decoder_size):
batch_decoder_inputs.append(
np.array([decoder_inputs[batch_idx][ind]
for batch_idx in range(self.batch_size)], dtype=np.int32)
)
batch_weight = np.ones(self.batch_size, dtype=np.float32)
for batch_idx in range(self.batch_size):
if ind < decoder_size - 1:
target = decoder_inputs[batch_idx][ind + 1]
if ind == decoder_size - 1 or target == reader._PAD_ID:
batch_weight[batch_idx] = 0.0
batch_weights.append(batch_weight)
return batch_encoder_inputs, batch_decoder_inputs, batch_weights