forked from udacity/AIND-Isolation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
agent_test.py
541 lines (440 loc) · 21.7 KB
/
agent_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
"""
This file contains test cases to verify the correct implementation of the
functions required for this project including minimax, alphabeta, and iterative
deepening. The heuristic function is tested for conformance to the expected
interface, but cannot be automatically assessed for correctness.
STUDENTS SHOULD NOT NEED TO MODIFY THIS CODE. IT WOULD BE BEST TO TREAT THIS
FILE AS A BLACK BOX FOR TESTING.
"""
import random
import unittest
import timeit
import sys
import isolation
import game_agent
from collections import Counter
from copy import deepcopy
from copy import copy
from functools import wraps
from queue import Queue
from threading import Thread
from multiprocessing import TimeoutError
from queue import Empty as QueueEmptyError
from importlib import reload
WRONG_MOVE = """
The {} function failed because it returned a non-optimal move at search depth {}.
Valid choices: {}
Your selection: {}
"""
WRONG_NUM_EXPLORED = """
Your {} search visited the wrong nodes at search depth {}. If the number
of visits is too large, make sure that iterative deepening is only
running when the `iterative` flag is set in the agent constructor.
Max explored size: {}
Number you explored: {}
"""
UNEXPECTED_VISIT = """
Your {} search did not visit the number of expected unique nodes at search
depth {}.
Max explored size: {}
Number you explored: {}
"""
ID_FAIL = """
Your agent explored the wrong number of nodes using Iterative Deepening and
minimax. Remember that ID + MM should check every node in each layer of the
game tree before moving on to the next layer.
"""
INVALID_MOVE = """
Your agent returned an invalid move. Make sure that your function returns
a selection when the search times out during iterative deepening.
Valid choices: {!s}
Your choice: {}
"""
TIMER_MARGIN = 15 # time (in ms) to leave on the timer to avoid timeout
def curr_time_millis():
"""Simple timer to return the current clock time in milliseconds."""
return 1000 * timeit.default_timer()
def handler(obj, testcase, queue):
"""Handler to pass information between threads; used in the timeout
function to abort long-running (i.e., probably hung) test cases.
"""
try:
queue.put((None, testcase(obj)))
except:
queue.put((sys.exc_info(), None))
def timeout(time_limit):
"""Function decorator for unittest test cases to specify test case timeout.
The timer mechanism works by spawning a new thread for the test to run in
and using the timeout handler for the thread-safe queue class to abort and
kill the child thread if it doesn't return within the timeout.
It is not safe to access system resources (e.g., files) within test cases
wrapped by this timer.
"""
def wrapUnitTest(testcase):
@wraps(testcase)
def testWrapper(self):
queue = Queue()
try:
p = Thread(target=handler, args=(self, testcase, queue))
p.daemon = True
p.start()
err, res = queue.get(timeout=time_limit)
p.join()
if err:
raise err[0](err[1]).with_traceback(err[2])
return res
except QueueEmptyError:
raise TimeoutError("Test aborted due to timeout. Test was " +
"expected to finish in less than {} second(s).".format(time_limit))
return testWrapper
return wrapUnitTest
def makeEvalTable(table):
"""Use a closure to create a heuristic function that returns values from
a table that maps board locations to constant values. This supports testing
the minimax and alphabeta search functions.
THIS HEURISTIC IS ONLY USEFUL FOR TESTING THE SEARCH FUNCTIONALITY -
IT IS NOT MEANT AS AN EXAMPLE OF A USEFUL HEURISTIC FOR GAME PLAYING.
"""
def score(game, player):
row, col = game.get_player_location(player)
return table[row][col]
return score
def makeEvalStop(limit, timer, value=None):
"""Use a closure to create a heuristic function that forces the search
timer to expire when a fixed number of node expansions have been perfomred
during the search. This ensures that the search algorithm should always be
in a predictable state regardless of node expansion order.
THIS HEURISTIC IS ONLY USEFUL FOR TESTING THE SEARCH FUNCTIONALITY -
IT IS NOT MEANT AS AN EXAMPLE OF A USEFUL HEURISTIC FOR GAME PLAYING.
"""
def score(game, player):
if timer.time_left() < 0:
raise TimeoutError("Timer expired during search. You must " +
"return an answer before the timer reaches 0.")
if limit == game.counts[0]:
timer.time_limit = 0
return 0
return score
def makeBranchEval(first_branch):
"""Use a closure to create a heuristic function that evaluates to a nonzero
score when the root of the search is the first branch explored, and
otherwise returns 0. This heuristic is used to force alpha-beta to prune
some parts of a game tree for testing.
THIS HEURISTIC IS ONLY USEFUL FOR TESTING THE SEARCH FUNCTIONALITY -
IT IS NOT MEANT AS AN EXAMPLE OF A USEFUL HEURISTIC FOR GAME PLAYING.
"""
def score(game, player):
if not first_branch:
first_branch.append(game.root)
if game.root in first_branch:
return 1.
return 0.
return score
class CounterBoard(isolation.Board):
"""Subclass of the isolation board that maintains counters for the number
of unique nodes and total nodes visited during depth first search.
Some functions from the base class must be overridden to maintain the
counters during search.
"""
def __init__(self, *args, **kwargs):
super(CounterBoard, self).__init__(*args, **kwargs)
self.counter = Counter()
self.visited = set()
self.root = None
def copy(self):
new_board = CounterBoard(self.__player_1__, self.__player_2__,
width=self.width, height=self.height)
new_board.move_count = self.move_count
new_board.__active_player__ = self.__active_player__
new_board.__inactive_player__ = self.__inactive_player__
new_board.__last_player_move__ = copy(self.__last_player_move__)
new_board.__player_symbols__ = copy(self.__player_symbols__)
new_board.__board_state__ = deepcopy(self.__board_state__)
new_board.counter = self.counter
new_board.visited = self.visited
new_board.root = self.root
return new_board
def forecast_move(self, move):
self.counter[move] += 1
self.visited.add(move)
new_board = self.copy()
new_board.apply_move(move)
if new_board.root is None:
new_board.root = move
return new_board
@property
def counts(self):
""" Return counts of (total, unique) nodes visited """
return sum(self.counter.values()), len(self.visited)
class Project1Test(unittest.TestCase):
def initAUT(self, depth, eval_fn, iterative=False,
method="minimax", loc1=(3, 3), loc2=(0, 0), w=7, h=7):
"""Generate and initialize player and board objects to be used for
testing.
"""
reload(game_agent)
agentUT = game_agent.CustomPlayer(depth, eval_fn, iterative, method)
board = CounterBoard(agentUT, 'null_agent', w, h)
board.apply_move(loc1)
board.apply_move(loc2)
return agentUT, board
@timeout(5)
# @unittest.skip("Skip eval function test.") # Uncomment this line to skip test
def test_heuristic(self):
""" Test output interface of heuristic score function interface."""
player1 = "Player1"
player2 = "Player2"
p1_location = (0, 0)
p2_location = (1, 1) # top left corner
game = isolation.Board(player1, player2)
game.apply_move(p1_location)
game.apply_move(p2_location)
self.assertIsInstance(game_agent.custom_score(game, player1), float,
"The heuristic function should return a floating point")
timeout(5)
# @unittest.skip("Skip simple minimax test.") # Uncomment this line to skip test
def test_minimax_interface(self):
""" Test CustomPlayer.minimax interface with simple input """
h, w = 7, 7 # board size
test_depth = 1
starting_location = (5, 3)
adversary_location = (0, 0) # top left corner
iterative_search = False
search_method = "minimax"
heuristic = lambda g, p: 0. # return 0 everywhere
# create a player agent & a game board
agentUT = game_agent.CustomPlayer(
test_depth, heuristic, iterative_search, search_method)
agentUT.time_left = lambda: 99 # ignore timeout for fixed-depth search
board = isolation.Board(agentUT, 'null_agent', w, h)
# place two "players" on the board at arbitrary (but fixed) locations
board.apply_move(starting_location)
board.apply_move(adversary_location)
for move in board.get_legal_moves():
next_state = board.forecast_move(move)
v, _ = agentUT.minimax(next_state, test_depth)
self.assertTrue(type(v) == float,
("Minimax function should return a floating " +
"point value approximating the score for the " +
"branch being searched."))
timeout(5)
# @unittest.skip("Skip alphabeta test.") # Uncomment this line to skip test
def test_alphabeta_interface(self):
""" Test CustomPlayer.alphabeta interface with simple input """
h, w = 9, 9 # board size
test_depth = 1
starting_location = (2, 7)
adversary_location = (0, 0) # top left corner
iterative_search = False
search_method = "alphabeta"
heuristic = lambda g, p: 0. # return 0 everywhere
# create a player agent & a game board
agentUT = game_agent.CustomPlayer(
test_depth, heuristic, iterative_search, search_method)
agentUT.time_left = lambda: 99 # ignore timeout for fixed-depth search
board = isolation.Board(agentUT, 'null_agent', w, h)
# place two "players" on the board at arbitrary (but fixed) locations
board.apply_move(starting_location)
board.apply_move(adversary_location)
for move in board.get_legal_moves():
next_state = board.forecast_move(move)
v, _ = agentUT.alphabeta(next_state, test_depth)
self.assertTrue(type(v) == float,
("Alpha Beta function should return a floating " +
"point value approximating the score for the " +
"branch being searched."))
@timeout(5)
# @unittest.skip("Skip get_move test.") # Uncomment this line to skip test
def test_get_move_interface(self):
""" Test CustomPlayer.get_move interface with simple input """
h, w = 9, 9 # board size
test_depth = 1
starting_location = (2, 7)
adversary_location = (0, 0) # top left corner
iterative_search = False
search_method = "minimax"
heuristic = lambda g, p: 0. # return 0 everywhere
# create a player agent & a game board
agentUT = game_agent.CustomPlayer(
test_depth, heuristic, iterative_search, search_method)
# Test that get_move returns a legal choice on an empty game board
board = isolation.Board(agentUT, 'null_agent', w, h)
legal_moves = board.get_legal_moves()
move = agentUT.get_move(board, legal_moves, lambda: 99)
self.assertIn(move, legal_moves,
("The get_move() function failed as player 1 on an " +
"empty board. It should return coordinates on the " +
"game board for the location of the agent's next " +
"move. The move must be one of the legal moves on " +
"the current game board."))
# Test that get_move returns a legal choice for first move as player 2
board = isolation.Board('null_agent', agentUT, w, h)
board.apply_move(starting_location)
legal_moves = board.get_legal_moves()
move = agentUT.get_move(board, legal_moves, lambda: 99)
self.assertIn(move, legal_moves,
("The get_move() function failed making the first " +
"move as player 2 on a new board. It should return " +
"coordinates on the game board for the location " +
"of the agent's next move. The move must be one " +
"of the legal moves on the current game board."))
# Test that get_move returns a legal choice after first move
board = isolation.Board(agentUT, 'null_agent', w, h)
board.apply_move(starting_location)
board.apply_move(adversary_location)
legal_moves = board.get_legal_moves()
move = agentUT.get_move(board, legal_moves, lambda: 99)
self.assertIn(move, legal_moves,
("The get_move() function failed as player 1 on a " +
"game in progress. It should return coordinates on" +
"the game board for the location of the agent's " +
"next move. The move must be one of the legal moves " +
"on the current game board."))
@timeout(5)
# @unittest.skip("Skip minimax test.") # Uncomment this line to skip test
def test_minimax(self):
""" Test CustomPlayer.minimax
This test uses a scoring function that returns a constant value based
on the location of the search agent on the board to force minimax to
choose a branch that visits those cells at a specific fixed-depth.
If minimax is working properly, it will visit a constant number of
nodes during the search and return one of the acceptable legal moves.
"""
h, w = 7, 7 # board size
starting_location = (2, 3)
adversary_location = (0, 0) # top left corner
iterative_search = False
method = "minimax"
# The agent under test starts at position (2, 3) on the board, which
# gives eight (8) possible legal moves [(0, 2), (0, 4), (1, 1), (1, 5),
# (3, 1), (3, 5), (4, 2), (4, 4)]. The search function will pick one of
# those moves based on the estimated score for each branch. The value
# only changes on odd depths because even depths end on when the
# adversary has initiative.
value_table = [[0] * w for _ in range(h)]
value_table[1][5] = 1 # depth 1 & 2
value_table[4][3] = 2 # depth 3 & 4
value_table[6][6] = 3 # depth 5
heuristic = makeEvalTable(value_table)
# These moves are the branches that will lead to the cells in the value
# table for the search depths.
expected_moves = [set([(1, 5)]),
set([(3, 1), (3, 5)]),
set([(3, 5), (4, 2)])]
# Expected number of node expansions during search
counts = [(8, 8), (24, 10), (92, 27), (418, 32), (1650, 43)]
# Test fixed-depth search; note that odd depths mean that the searching
# player (student agent) has the last move, while even depths mean that
# the adversary has the last move before calling the heuristic
# evaluation function.
for idx in range(5):
test_depth = idx + 1
agentUT, board = self.initAUT(test_depth, heuristic,
iterative_search, method,
loc1=starting_location,
loc2=adversary_location)
# disable search timeout by returning a constant value
agentUT.time_left = lambda: 1e3
_, move = agentUT.minimax(board, test_depth)
num_explored_valid = board.counts[0] == counts[idx][0]
num_unique_valid = board.counts[1] == counts[idx][1]
self.assertTrue(num_explored_valid, WRONG_NUM_EXPLORED.format(
method, test_depth, counts[idx][0], board.counts[0]))
self.assertTrue(num_unique_valid, UNEXPECTED_VISIT.format(
method, test_depth, counts[idx][1], board.counts[1]))
self.assertIn(move, expected_moves[idx // 2], WRONG_MOVE.format(
method, test_depth, expected_moves[idx // 2], move))
@timeout(20)
# @unittest.skip("Skip alpha-beta test.") # Uncomment this line to skip test
def test_alphabeta(self):
""" Test CustomPlayer.alphabeta
This test uses a scoring function that returns a constant value based
on the branch being searched by alphabeta in the user agent, and forces
the search to prune on every other branch it visits. By using a huge
board where the players are too far apart to interact and every branch
has the same growth factor, the expansion and pruning must result in
an exact number of expanded nodes.
"""
h, w = 101, 101 # board size
starting_location = (50, 50)
adversary_location = (0, 0) # top left corner
iterative_search = False
method = "alphabeta"
# The agent under test starts in the middle of a huge board so that
# every branch has the same number of possible moves, so pruning any
# branch has the same effect during testing
# These are the expected number of node expansions for alphabeta search
# to explore the game tree to fixed depth. The custom eval function
# used for this test ensures that some branches must be pruned, while
# the search should still return an optimal move.
counts = [(8, 8), (17, 10), (74, 42), (139, 51), (540, 119)]
for idx in range(len(counts)):
test_depth = idx + 1 # pruning guarantee requires min depth of 3
first_branch = []
heuristic = makeBranchEval(first_branch)
agentUT, board = self.initAUT(test_depth, heuristic,
iterative_search, method,
loc1=starting_location,
loc2=adversary_location,
w=w, h=h)
# disable search timeout by returning a constant value
agentUT.time_left = lambda: 1e3
_, move = agentUT.alphabeta(board, test_depth)
num_explored_valid = board.counts[0] == counts[idx][0]
num_unique_valid = board.counts[1] == counts[idx][1]
self.assertTrue(num_explored_valid, WRONG_NUM_EXPLORED.format(
method, test_depth, counts[idx][0], board.counts[0]))
self.assertTrue(num_unique_valid, UNEXPECTED_VISIT.format(
method, test_depth, counts[idx][1], board.counts[1]))
self.assertIn(move, first_branch, WRONG_MOVE.format(
method, test_depth, first_branch, move))
@timeout(20)
# @unittest.skip("Skip iterative deepening test.") # Uncomment this line to skip test
def test_get_move(self):
""" Test iterative deepening in CustomPlayer.get_move by placing an
agent on the game board and performing ID minimax search, which
should visit a specific number of unique nodes while expanding. By
forcing the search to timeout when a predetermined number of nodes
have been expanded, we can then verify that the expected number of
unique nodes have been visited.
"""
class DynamicTimer():
"""Dynamic Timer allows the time limit to be changed after the
timer is initialized so that the search timeout can be triggered
before the timer actually expires. This allows the timer to expire
when an event occurs, regardless of the clock time required until
the event happens.
"""
def __init__(self, time_limit):
self.time_limit = time_limit
self.start_time = curr_time_millis()
def time_left(self):
return self.time_limit - (curr_time_millis() - self.start_time)
w, h = 11, 11 # board size
adversary_location = (0, 0)
method = "minimax"
# The agent under test starts at the positions indicated below, and
# performs an iterative deepening minimax search (minimax is easier to
# test because it always visits all nodes in the game tree at every
# level).
origins = [(2, 3), (6, 6), (7, 4), (4, 2), (0, 5), (10, 10)]
exact_counts = [(8, 8), (32, 10), (160, 39), (603, 35), (1861, 54), (3912, 62)]
for idx in range(len(origins)):
# set the initial timer high enough that the search will not
# timeout before triggering the dynamic timer to halt by visiting
# the expected number of nodes
time_limit = 1e4
timer = DynamicTimer(time_limit)
eval_fn = makeEvalStop(exact_counts[idx][0], timer, time_limit)
agentUT, board = self.initAUT(-1, eval_fn, True, method,
origins[idx], adversary_location,
w, h)
legal_moves = board.get_legal_moves()
chosen_move = agentUT.get_move(board, legal_moves, timer.time_left)
diff_total = abs(board.counts[0] - exact_counts[idx][0])
diff_unique = abs(board.counts[1] - exact_counts[idx][1])
self.assertTrue(diff_total <= 1 and diff_unique == 0, ID_FAIL)
self.assertTrue(chosen_move in legal_moves, INVALID_MOVE.format(
legal_moves, chosen_move))
if __name__ == '__main__':
unittest.main()