-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn1.py
192 lines (158 loc) · 7.61 KB
/
cnn1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
import numpy as np
import iris_dataset
import cifar
# Current strategy:
# Just try to tell between ff, logic, fill, other
# - Reduce input channels from RGB to just gray - how to do that? This
# should reduce the # of parameters we need to tune
# - Refine the CNN to match our use case: right now the intermediate layers
# are optimized for a task that's not ours (handwriting recognition)
# - Maybe need to eliminate extremely small fill from the training set?
# - Alternatively, do we specify a cell size? Need to think about what
# that even means.
# - Maybe what we want in the end is a classifier that
# given a patch of image, guesses how many of what type of cell are in
# a region with a certain probability?
# - The underlying issue is that cell sizes are quite different in scale,
# and the size of the cell matters. The problem is the current CNN
# is designed explicitly to disregard scale (written numbers have
# the same meaning regardless of size), so again, need to tune the CNN
# to throw away the part that allows us to scale an object.
PATH = './iris_net.pth'
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
#self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc1 = nn.Linear(1040, 120) # BUT WHY
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 3) # set to number of classes
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
if __name__ == "__main__":
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 4
#debugset = cifar.CIFAR10(root='./data', train=True, download=True, transform=transform)
#debugloader = torch.utils.data.DataLoader(debugset, batch_size=batch_size, shuffle=True, num_workers=2)
import pickle
from typing import Any
data: Any = []
targets = []
trainset = iris_dataset.Iris(root='./imaging', train=True,
download=True, transform=transform)
print(len(trainset.classes))
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
testset = iris_dataset.Iris(root='./imaging', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)
classes = ('ff', 'logic', 'fill')
dataiter = iter(trainloader)
images, labels = next(dataiter)
# print images
print('Image check: ', ' '.join(f'{classes[labels[j]]:5s}' for j in range(batch_size)))
imshow(torchvision.utils.make_grid(images))
if True:
net = Net()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Assuming that we are on a CUDA machine, this should print a CUDA device:
print(device)
net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(4): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
# inputs, labels = data
inputs, labels = data[0].to(device), data[1].to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
running_loss = 0.0
print('Finished Training')
torch.save(net.state_dict(), PATH)
if True:
net = Net()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Assuming that we are on a CUDA machine, this should print a CUDA device:
print(device)
net.load_state_dict(torch.load(PATH, weights_only=True))
net.to(device)
dataiter = iter(testloader)
images, labels = next(dataiter)
# print images
print('GroundTruth: ', ' '.join(f'{classes[labels[j]]:5s}' for j in range(4)))
imshow(torchvision.utils.make_grid(images))
images_cuda = images.to(device)
outputs = net(images_cuda)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join(f'{classes[predicted[j]]:5s}'
for j in range(4)))
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data in testloader:
images, labels = data
# calculate outputs by running images through the network
images_cuda = images.to(device)
labels_cuda = labels.to(device)
outputs = net(images_cuda)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels_cuda.size(0)
correct += (predicted == labels_cuda).sum().item()
print(f'Accuracy of the network on the test images: {100 * correct // total} %')
# prepare to count predictions for each class
correct_pred = {classname: 0 for classname in classes}
total_pred = {classname: 0 for classname in classes}
# again no gradients needed
with torch.no_grad():
for data in testloader:
images, labels = data
images_cuda = images.to(device)
labels_cuda = labels.to(device)
outputs = net(images_cuda)
_, predictions = torch.max(outputs, 1)
# collect the correct predictions for each class
for label, prediction in zip(labels_cuda, predictions):
if label == prediction:
correct_pred[classes[label]] += 1
total_pred[classes[label]] += 1
# print accuracy for each class
for classname, correct_count in correct_pred.items():
accuracy = 100 * float(correct_count) / total_pred[classname]
print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')