-
Notifications
You must be signed in to change notification settings - Fork 28
/
doc_classification.py
243 lines (203 loc) · 9.91 KB
/
doc_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from pathlib import Path
from farm.data_handler.data_silo import DataSilo
from farm.data_handler.processor import TextClassificationProcessor
from farm.eval import Evaluator
from farm.modeling.optimization import initialize_optimizer
from farm.modeling.language_model import LanguageModel
from farm.modeling.prediction_head import MultiLabelTextClassificationHead
from farm.modeling.tokenization import Tokenizer
from farm.train import EarlyStopping
from farm.utils import set_all_seeds, MLFlowLogger, initialize_device_settings
from ray import tune
import yaml
import fire
from custom_models.evaluation.ExtendedEvaluator import ExtendedEvaluator
from custom_models.training.ExtendedAdaptiveModel import ExtendedAdaptiveModel
from custom_models.training.ExtendedTrainer import ExtendedTrainer
from custom_models.training.ExtendedTextClassificationHead import ExtendedTextClassificationHead
from metrics import register_task_metrics
import utils
logger = utils.get_logger(__name__)
def doc_classification(task_config,
model_name_or_path,
cache_dir,
run_name="0",
lr=1e-05,
warmup_steps=5000,
balance_classes=True,
embeds_dropout=0.1,
epochs=200, # large because we use early stopping by default
batch_size=20,
grad_acc_steps=1,
early_stopping_metric="roc_auc",
early_stopping_mode="max",
early_stopping_patience=10,
model_class="Bert",
tokenizer_class="BertTokenizer",
do_lower_case=False,
do_train=True,
do_eval=True,
do_hpo=False,
print_preds=False,
print_dev_preds=False,
max_seq_len=512,
seed=11,
eval_every=500,
use_amp=False,
use_cuda=True,
):
# Load task config
task_config = yaml.safe_load(open(task_config))
data_dir = Path(task_config["data"]["data_dir"])
save_dir = utils.init_save_dir(task_config["output_dir"],
task_config["experiment_name"],
run_name,
tune.session.get_trial_name() if do_hpo else None)
# Create label list from args list or (for large label lists) create from file by splitting by space
if isinstance(task_config["data"]["label_list"], list):
label_list = task_config["data"]["label_list"]
else:
with open(data_dir / task_config["data"]["label_list"]) as code_file:
label_list = code_file.read().split(" ")
# Register Outcome Metrics
register_task_metrics(label_list)
# General Settings
set_all_seeds(seed=seed)
device, n_gpu = initialize_device_settings(use_cuda=use_cuda, use_amp=use_amp)
# 1.Create a tokenizer
tokenizer = Tokenizer.load(pretrained_model_name_or_path=model_name_or_path, tokenizer_class=tokenizer_class,
do_lower_case=do_lower_case)
# 2. Create a DataProcessor that handles all the conversion from raw text into a pytorch Dataset
processor = TextClassificationProcessor(tokenizer=tokenizer,
max_seq_len=max_seq_len,
data_dir=data_dir,
label_list=label_list,
metric=task_config["metric"],
multilabel=task_config["multilabel"],
train_filename=task_config["data"]["train_filename"],
dev_filename=task_config["data"]["dev_filename"],
dev_split=task_config["data"]["dev_split"] if "dev_split" in task_config[
"data"] else None,
test_filename=task_config["data"]["test_filename"],
delimiter=task_config["data"]["parsing"]["delimiter"],
quote_char=task_config["data"]["parsing"]["quote_char"],
label_column_name=task_config["data"]["parsing"]["label_column"]
)
# 3. Create a DataSilo that loads several datasets (train/dev/test), provides DataLoaders for them and calculates a
# few descriptive statistics of our datasets
data_silo = DataSilo(
processor=processor,
caching=True,
cache_path=Path(cache_dir),
batch_size=batch_size)
if do_train:
# Setup MLFlow logger
ml_logger = MLFlowLogger(tracking_uri=task_config["log_dir"])
ml_logger.init_experiment(experiment_name=task_config["experiment_name"],
run_name=f'{task_config["experiment_name"]}_{run_name}')
# 4. Create an AdaptiveModel
# a) which consists of a pretrained language model as a basis
language_model = LanguageModel.load(model_name_or_path, language_model_class=model_class)
# b) and a prediction head on top that is suited for our task
# Define class weights
if balance_classes:
class_weights = data_silo.calculate_class_weights(task_name=task_config["task_type"])
else:
class_weights = None
# Create Multi- or Single-Label Classification Heads
if task_config["multilabel"]:
prediction_head = MultiLabelTextClassificationHead(
class_weights=class_weights,
num_labels=len(label_list))
else:
prediction_head = ExtendedTextClassificationHead(
class_weights=class_weights,
num_labels=len(label_list))
model = ExtendedAdaptiveModel(
language_model=language_model,
prediction_heads=[prediction_head],
embeds_dropout_prob=embeds_dropout,
lm_output_types=[task_config["output_type"]],
device=device)
# 5. Create an optimizer
schedule_opts = {"name": "LinearWarmup",
"num_warmup_steps": warmup_steps}
model, optimizer, lr_schedule = initialize_optimizer(
model=model,
learning_rate=lr,
device=device,
n_batches=len(data_silo.loaders["train"]),
n_epochs=epochs,
use_amp=use_amp,
grad_acc_steps=grad_acc_steps,
schedule_opts=schedule_opts)
# 6. Create an early stopping instance
early_stopping = None
if early_stopping_mode != "none":
early_stopping = EarlyStopping(
mode=early_stopping_mode,
min_delta=0.0001,
save_dir=save_dir,
metric=early_stopping_metric,
patience=early_stopping_patience
)
# 7. Feed everything to the Trainer, which keeps care of growing our model into powerful plant and evaluates it
# from time to time
trainer = ExtendedTrainer(
model=model,
optimizer=optimizer,
data_silo=data_silo,
epochs=epochs,
n_gpu=n_gpu,
lr_schedule=lr_schedule,
evaluate_every=eval_every,
early_stopping=early_stopping,
device=device,
grad_acc_steps=grad_acc_steps,
evaluator_test=do_eval
)
def score_callback(eval_score, train_loss):
tune.report(roc_auc_dev=eval_score, train_loss=train_loss)
# 8. Train the model
trainer.train(score_callback=score_callback if do_hpo else None)
# 9. Save model if not saved in early stopping
model.save(save_dir / "final_model")
processor.save(save_dir / "final_model")
if do_eval:
# Load newly trained model or existing model
if do_train:
model_dir = save_dir
else:
model_dir = Path(model_name_or_path)
logger.info("###### Eval on TEST SET #####")
evaluator_test = ExtendedEvaluator(
data_loader=data_silo.get_data_loader("test"),
tasks=data_silo.processor.tasks,
device=device
)
# Load trained model for evaluation
model = ExtendedAdaptiveModel.load(model_dir, device)
model.connect_heads_with_processor(data_silo.processor.tasks, require_labels=True)
# Evaluate
results = evaluator_test.eval(model, return_preds_and_labels=True)
# Log results
utils.log_results(results, dataset_name="test", steps=len(evaluator_test.data_loader),
save_path=model_dir / "eval_results.txt")
if print_preds:
# Print model test predictions
utils.save_predictions(results, save_dir=model_dir, multilabel=task_config["multilabel"])
if print_dev_preds:
# Evaluate on dev set, e.g. for threshold tuning
evaluator_dev = Evaluator(
data_loader=data_silo.get_data_loader("dev"),
tasks=data_silo.processor.tasks,
device=device
)
dev_results = evaluator_dev.eval(model, return_preds_and_labels=True)
utils.log_results(dev_results, dataset_name="dev", steps=len(evaluator_dev.data_loader),
save_path=model_dir / "eval_dev_results.txt")
# Print model dev predictions
utils.save_predictions(dev_results, save_dir=model_dir, multilabel=task_config["multilabel"],
dataset_name="dev")
if __name__ == '__main__':
fire.Fire(doc_classification)