-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
lower.rs
7218 lines (6684 loc) · 315 KB
/
lower.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Lowering rules for X64.
use crate::data_value::DataValue;
use crate::ir::{
condcodes::{CondCode, FloatCC, IntCC},
types, AbiParam, ArgumentPurpose, ExternalName, Inst as IRInst, InstructionData, LibCall,
Opcode, Signature, Type,
};
use crate::isa::x64::abi::*;
use crate::isa::x64::inst::args::*;
use crate::isa::x64::inst::*;
use crate::isa::{x64::settings as x64_settings, x64::X64Backend, CallConv};
use crate::machinst::lower::*;
use crate::machinst::*;
use crate::result::CodegenResult;
use crate::settings::{Flags, TlsModel};
use alloc::boxed::Box;
use alloc::vec::Vec;
use log::trace;
use regalloc::{Reg, RegClass, Writable};
use smallvec::{smallvec, SmallVec};
use std::convert::TryFrom;
use target_lexicon::Triple;
//=============================================================================
// Helpers for instruction lowering.
fn is_int_or_ref_ty(ty: Type) -> bool {
match ty {
types::I8 | types::I16 | types::I32 | types::I64 | types::R64 => true,
types::B1 | types::B8 | types::B16 | types::B32 | types::B64 => true,
types::R32 => panic!("shouldn't have 32-bits refs on x64"),
_ => false,
}
}
fn is_bool_ty(ty: Type) -> bool {
match ty {
types::B1 | types::B8 | types::B16 | types::B32 | types::B64 => true,
types::R32 => panic!("shouldn't have 32-bits refs on x64"),
_ => false,
}
}
/// This is target-word-size dependent. And it excludes booleans and reftypes.
fn is_valid_atomic_transaction_ty(ty: Type) -> bool {
match ty {
types::I8 | types::I16 | types::I32 | types::I64 => true,
_ => false,
}
}
/// Returns whether the given specified `input` is a result produced by an instruction with Opcode
/// `op`.
// TODO investigate failures with checking against the result index.
fn matches_input<C: LowerCtx<I = Inst>>(
ctx: &mut C,
input: InsnInput,
op: Opcode,
) -> Option<IRInst> {
let inputs = ctx.get_input_as_source_or_const(input.insn, input.input);
inputs.inst.and_then(|(src_inst, _)| {
let data = ctx.data(src_inst);
if data.opcode() == op {
return Some(src_inst);
}
None
})
}
/// Returns whether the given specified `input` is a result produced by an instruction with any of
/// the opcodes specified in `ops`.
fn matches_input_any<C: LowerCtx<I = Inst>>(
ctx: &mut C,
input: InsnInput,
ops: &[Opcode],
) -> Option<IRInst> {
let inputs = ctx.get_input_as_source_or_const(input.insn, input.input);
inputs.inst.and_then(|(src_inst, _)| {
let data = ctx.data(src_inst);
for &op in ops {
if data.opcode() == op {
return Some(src_inst);
}
}
None
})
}
/// Emits instruction(s) to generate the given 64-bit constant value into a newly-allocated
/// temporary register, returning that register.
fn generate_constant<C: LowerCtx<I = Inst>>(ctx: &mut C, ty: Type, c: u64) -> ValueRegs<Reg> {
let from_bits = ty_bits(ty);
let masked = if from_bits < 64 {
c & ((1u64 << from_bits) - 1)
} else {
c
};
let cst_copy = ctx.alloc_tmp(ty);
for inst in Inst::gen_constant(cst_copy, masked as u128, ty, |ty| {
ctx.alloc_tmp(ty).only_reg().unwrap()
})
.into_iter()
{
ctx.emit(inst);
}
non_writable_value_regs(cst_copy)
}
/// Put the given input into possibly multiple registers, and mark it as used (side-effect).
fn put_input_in_regs<C: LowerCtx<I = Inst>>(ctx: &mut C, spec: InsnInput) -> ValueRegs<Reg> {
let ty = ctx.input_ty(spec.insn, spec.input);
let input = ctx.get_input_as_source_or_const(spec.insn, spec.input);
if let Some(c) = input.constant {
// Generate constants fresh at each use to minimize long-range register pressure.
generate_constant(ctx, ty, c)
} else {
ctx.put_input_in_regs(spec.insn, spec.input)
}
}
/// Put the given input into a register, and mark it as used (side-effect).
fn put_input_in_reg<C: LowerCtx<I = Inst>>(ctx: &mut C, spec: InsnInput) -> Reg {
put_input_in_regs(ctx, spec)
.only_reg()
.expect("Multi-register value not expected")
}
/// Determines whether a load operation (indicated by `src_insn`) can be merged
/// into the current lowering point. If so, returns the address-base source (as
/// an `InsnInput`) and an offset from that address from which to perform the
/// load.
fn is_mergeable_load<C: LowerCtx<I = Inst>>(
ctx: &mut C,
src_insn: IRInst,
) -> Option<(InsnInput, i32)> {
let insn_data = ctx.data(src_insn);
let inputs = ctx.num_inputs(src_insn);
if inputs != 1 {
return None;
}
let load_ty = ctx.output_ty(src_insn, 0);
if ty_bits(load_ty) < 32 {
// Narrower values are handled by ALU insts that are at least 32 bits
// wide, which is normally OK as we ignore upper buts; but, if we
// generate, e.g., a direct-from-memory 32-bit add for a byte value and
// the byte is the last byte in a page, the extra data that we load is
// incorrectly accessed. So we only allow loads to merge for
// 32-bit-and-above widths.
return None;
}
// SIMD instructions can only be load-coalesced when the loaded value comes
// from an aligned address.
if load_ty.is_vector() && !insn_data.memflags().map_or(false, |f| f.aligned()) {
return None;
}
// Just testing the opcode is enough, because the width will always match if
// the type does (and the type should match if the CLIF is properly
// constructed).
if insn_data.opcode() == Opcode::Load {
let offset = insn_data
.load_store_offset()
.expect("load should have offset");
Some((
InsnInput {
insn: src_insn,
input: 0,
},
offset,
))
} else {
None
}
}
/// Put the given input into a register or a memory operand.
/// Effectful: may mark the given input as used, when returning the register form.
fn input_to_reg_mem<C: LowerCtx<I = Inst>>(ctx: &mut C, spec: InsnInput) -> RegMem {
let inputs = ctx.get_input_as_source_or_const(spec.insn, spec.input);
if let Some(c) = inputs.constant {
// Generate constants fresh at each use to minimize long-range register pressure.
let ty = ctx.input_ty(spec.insn, spec.input);
return RegMem::reg(generate_constant(ctx, ty, c).only_reg().unwrap());
}
if let Some((src_insn, 0)) = inputs.inst {
if let Some((addr_input, offset)) = is_mergeable_load(ctx, src_insn) {
ctx.sink_inst(src_insn);
let amode = lower_to_amode(ctx, addr_input, offset);
return RegMem::mem(amode);
}
}
RegMem::reg(
ctx.put_input_in_regs(spec.insn, spec.input)
.only_reg()
.unwrap(),
)
}
/// An extension specification for `extend_input_to_reg`.
#[derive(Clone, Copy)]
enum ExtSpec {
ZeroExtendTo32,
ZeroExtendTo64,
SignExtendTo32,
#[allow(dead_code)] // not used just yet but may be used in the future!
SignExtendTo64,
}
/// Put the given input into a register, marking it as used, and do a zero- or signed- extension if
/// required. (This obviously causes side-effects.)
fn extend_input_to_reg<C: LowerCtx<I = Inst>>(
ctx: &mut C,
spec: InsnInput,
ext_spec: ExtSpec,
) -> Reg {
let requested_size = match ext_spec {
ExtSpec::ZeroExtendTo32 | ExtSpec::SignExtendTo32 => 32,
ExtSpec::ZeroExtendTo64 | ExtSpec::SignExtendTo64 => 64,
};
let input_size = ctx.input_ty(spec.insn, spec.input).bits();
let requested_ty = if requested_size == 32 {
types::I32
} else {
types::I64
};
let ext_mode = match (input_size, requested_size) {
(a, b) if a == b => return put_input_in_reg(ctx, spec),
(1, 8) => return put_input_in_reg(ctx, spec),
(a, b) => ExtMode::new(a, b).unwrap_or_else(|| panic!("invalid extension: {} -> {}", a, b)),
};
let src = input_to_reg_mem(ctx, spec);
let dst = ctx.alloc_tmp(requested_ty).only_reg().unwrap();
match ext_spec {
ExtSpec::ZeroExtendTo32 | ExtSpec::ZeroExtendTo64 => {
ctx.emit(Inst::movzx_rm_r(ext_mode, src, dst))
}
ExtSpec::SignExtendTo32 | ExtSpec::SignExtendTo64 => {
ctx.emit(Inst::movsx_rm_r(ext_mode, src, dst))
}
}
dst.to_reg()
}
/// Returns whether the given input is an immediate that can be properly sign-extended, without any
/// possible side-effect.
fn non_reg_input_to_sext_imm(input: NonRegInput, input_ty: Type) -> Option<u32> {
input.constant.and_then(|x| {
// For i64 instructions (prefixed with REX.W), require that the immediate will sign-extend
// to 64 bits. For other sizes, it doesn't matter and we can just use the plain
// constant.
if input_ty.bytes() != 8 || low32_will_sign_extend_to_64(x) {
Some(x as u32)
} else {
None
}
})
}
fn input_to_imm<C: LowerCtx<I = Inst>>(ctx: &mut C, spec: InsnInput) -> Option<u64> {
ctx.get_input_as_source_or_const(spec.insn, spec.input)
.constant
}
/// Put the given input into an immediate, a register or a memory operand.
/// Effectful: may mark the given input as used, when returning the register form.
fn input_to_reg_mem_imm<C: LowerCtx<I = Inst>>(ctx: &mut C, spec: InsnInput) -> RegMemImm {
let input = ctx.get_input_as_source_or_const(spec.insn, spec.input);
let input_ty = ctx.input_ty(spec.insn, spec.input);
match non_reg_input_to_sext_imm(input, input_ty) {
Some(x) => RegMemImm::imm(x),
None => match input_to_reg_mem(ctx, spec) {
RegMem::Reg { reg } => RegMemImm::reg(reg),
RegMem::Mem { addr } => RegMemImm::mem(addr),
},
}
}
/// Emit an instruction to insert a value `src` into a lane of `dst`.
fn emit_insert_lane<C: LowerCtx<I = Inst>>(
ctx: &mut C,
src: RegMem,
dst: Writable<Reg>,
lane: u8,
ty: Type,
) {
if !ty.is_float() {
let (sse_op, size) = match ty.lane_bits() {
8 => (SseOpcode::Pinsrb, OperandSize::Size32),
16 => (SseOpcode::Pinsrw, OperandSize::Size32),
32 => (SseOpcode::Pinsrd, OperandSize::Size32),
64 => (SseOpcode::Pinsrd, OperandSize::Size64),
_ => panic!("Unable to insertlane for lane size: {}", ty.lane_bits()),
};
ctx.emit(Inst::xmm_rm_r_imm(sse_op, src, dst, lane, size));
} else if ty == types::F32 {
let sse_op = SseOpcode::Insertps;
// Insert 32-bits from replacement (at index 00, bits 7:8) to vector (lane
// shifted into bits 5:6).
let lane = 0b00_00_00_00 | lane << 4;
ctx.emit(Inst::xmm_rm_r_imm(
sse_op,
src,
dst,
lane,
OperandSize::Size32,
));
} else if ty == types::F64 {
let sse_op = match lane {
// Move the lowest quadword in replacement to vector without changing
// the upper bits.
0 => SseOpcode::Movsd,
// Move the low 64 bits of replacement vector to the high 64 bits of the
// vector.
1 => SseOpcode::Movlhps,
_ => unreachable!(),
};
// Here we use the `xmm_rm_r` encoding because it correctly tells the register
// allocator how we are using `dst`: we are using `dst` as a `mod` whereas other
// encoding formats like `xmm_unary_rm_r` treat it as a `def`.
ctx.emit(Inst::xmm_rm_r(sse_op, src, dst));
} else {
panic!("unable to emit insertlane for type: {}", ty)
}
}
/// Emit an instruction to extract a lane of `src` into `dst`.
fn emit_extract_lane<C: LowerCtx<I = Inst>>(
ctx: &mut C,
src: Reg,
dst: Writable<Reg>,
lane: u8,
ty: Type,
) {
if !ty.is_float() {
let (sse_op, size) = match ty.lane_bits() {
8 => (SseOpcode::Pextrb, OperandSize::Size32),
16 => (SseOpcode::Pextrw, OperandSize::Size32),
32 => (SseOpcode::Pextrd, OperandSize::Size32),
64 => (SseOpcode::Pextrd, OperandSize::Size64),
_ => panic!("Unable to extractlane for lane size: {}", ty.lane_bits()),
};
let src = RegMem::reg(src);
ctx.emit(Inst::xmm_rm_r_imm(sse_op, src, dst, lane, size));
} else if ty == types::F32 || ty == types::F64 {
if lane == 0 {
// Remove the extractlane instruction, leaving the float where it is. The upper
// bits will remain unchanged; for correctness, this relies on Cranelift type
// checking to avoid using those bits.
ctx.emit(Inst::gen_move(dst, src, ty));
} else {
// Otherwise, shuffle the bits in `lane` to the lowest lane.
let sse_op = SseOpcode::Pshufd;
let mask = match ty {
// Move the value at `lane` to lane 0, copying existing value at lane 0 to
// other lanes. Again, this relies on Cranelift type checking to avoid
// using those bits.
types::F32 => {
assert!(lane > 0 && lane < 4);
0b00_00_00_00 | lane
}
// Move the value at `lane` 1 (we know it must be 1 because of the `if`
// statement above) to lane 0 and leave lane 1 unchanged. The Cranelift type
// checking assumption also applies here.
types::F64 => {
assert!(lane == 1);
0b11_10_11_10
}
_ => unreachable!(),
};
let src = RegMem::reg(src);
ctx.emit(Inst::xmm_rm_r_imm(
sse_op,
src,
dst,
mask,
OperandSize::Size32,
));
}
} else {
panic!("unable to emit extractlane for type: {}", ty)
}
}
/// Emits an int comparison instruction.
///
/// Note: make sure that there are no instructions modifying the flags between a call to this
/// function and the use of the flags!
///
/// Takes the condition code that will be tested, and returns
/// the condition code that should be used. This allows us to
/// synthesize comparisons out of multiple instructions for
/// special cases (e.g., 128-bit integers).
fn emit_cmp<C: LowerCtx<I = Inst>>(ctx: &mut C, insn: IRInst, cc: IntCC) -> IntCC {
let ty = ctx.input_ty(insn, 0);
let inputs = [InsnInput { insn, input: 0 }, InsnInput { insn, input: 1 }];
if ty == types::I128 {
// We need to compare both halves and combine the results appropriately.
let cmp1 = ctx.alloc_tmp(types::I64).only_reg().unwrap();
let cmp2 = ctx.alloc_tmp(types::I64).only_reg().unwrap();
let lhs = put_input_in_regs(ctx, inputs[0]);
let lhs_lo = lhs.regs()[0];
let lhs_hi = lhs.regs()[1];
let rhs = put_input_in_regs(ctx, inputs[1]);
let rhs_lo = RegMemImm::reg(rhs.regs()[0]);
let rhs_hi = RegMemImm::reg(rhs.regs()[1]);
match cc {
IntCC::Equal => {
ctx.emit(Inst::cmp_rmi_r(OperandSize::Size64, rhs_hi, lhs_hi));
ctx.emit(Inst::setcc(CC::Z, cmp1));
ctx.emit(Inst::cmp_rmi_r(OperandSize::Size64, rhs_lo, lhs_lo));
ctx.emit(Inst::setcc(CC::Z, cmp2));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(cmp1.to_reg()),
cmp2,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::imm(1),
cmp2,
));
IntCC::NotEqual
}
IntCC::NotEqual => {
ctx.emit(Inst::cmp_rmi_r(OperandSize::Size64, rhs_hi, lhs_hi));
ctx.emit(Inst::setcc(CC::NZ, cmp1));
ctx.emit(Inst::cmp_rmi_r(OperandSize::Size64, rhs_lo, lhs_lo));
ctx.emit(Inst::setcc(CC::NZ, cmp2));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Or,
RegMemImm::reg(cmp1.to_reg()),
cmp2,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::imm(1),
cmp2,
));
IntCC::NotEqual
}
IntCC::SignedLessThan
| IntCC::SignedLessThanOrEqual
| IntCC::SignedGreaterThan
| IntCC::SignedGreaterThanOrEqual
| IntCC::UnsignedLessThan
| IntCC::UnsignedLessThanOrEqual
| IntCC::UnsignedGreaterThan
| IntCC::UnsignedGreaterThanOrEqual => {
// Result = (lhs_hi <> rhs_hi) ||
// (lhs_hi == rhs_hi && lhs_lo <> rhs_lo)
let cmp3 = ctx.alloc_tmp(types::I64).only_reg().unwrap();
ctx.emit(Inst::cmp_rmi_r(OperandSize::Size64, rhs_hi, lhs_hi));
ctx.emit(Inst::setcc(CC::from_intcc(cc.without_equal()), cmp1));
ctx.emit(Inst::setcc(CC::Z, cmp2));
ctx.emit(Inst::cmp_rmi_r(OperandSize::Size64, rhs_lo, lhs_lo));
ctx.emit(Inst::setcc(CC::from_intcc(cc.unsigned()), cmp3));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(cmp2.to_reg()),
cmp3,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Or,
RegMemImm::reg(cmp1.to_reg()),
cmp3,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::imm(1),
cmp3,
));
IntCC::NotEqual
}
_ => panic!("Unhandled IntCC in I128 comparison: {:?}", cc),
}
} else {
// TODO Try to commute the operands (and invert the condition) if one is an immediate.
let lhs = put_input_in_reg(ctx, inputs[0]);
// We force the RHS into a register, and disallow load-op fusion, because we
// do not have a transitive guarantee that this cmp-site will be the sole
// user of the value. Consider: the icmp might be the only user of a load,
// but there may be multiple users of the icmp (e.g. select or bint
// instructions) that each invoke `emit_cmp()`. If we were to allow a load
// to sink to the *latest* one, but other sites did not permit sinking, then
// we would be missing the load for other cmp-sites.
let rhs = put_input_in_reg(ctx, inputs[1]);
// Cranelift's icmp semantics want to compare lhs - rhs, while Intel gives
// us dst - src at the machine instruction level, so invert operands.
ctx.emit(Inst::cmp_rmi_r(
OperandSize::from_ty(ty),
RegMemImm::reg(rhs),
lhs,
));
cc
}
}
/// A specification for a fcmp emission.
enum FcmpSpec {
/// Normal flow.
Normal,
/// Avoid emitting Equal at all costs by inverting it to NotEqual, and indicate when that
/// happens with `InvertedEqualOrConditions`.
///
/// This is useful in contexts where it is hard/inefficient to produce a single instruction (or
/// sequence of instructions) that check for an "AND" combination of condition codes; see for
/// instance lowering of Select.
InvertEqual,
}
/// This explains how to interpret the results of an fcmp instruction.
enum FcmpCondResult {
/// The given condition code must be set.
Condition(CC),
/// Both condition codes must be set.
AndConditions(CC, CC),
/// Either of the conditions codes must be set.
OrConditions(CC, CC),
/// The associated spec was set to `FcmpSpec::InvertEqual` and Equal has been inverted. Either
/// of the condition codes must be set, and the user must invert meaning of analyzing the
/// condition code results. When the spec is set to `FcmpSpec::Normal`, then this case can't be
/// reached.
InvertedEqualOrConditions(CC, CC),
}
/// Emits a float comparison instruction.
///
/// Note: make sure that there are no instructions modifying the flags between a call to this
/// function and the use of the flags!
fn emit_fcmp<C: LowerCtx<I = Inst>>(
ctx: &mut C,
insn: IRInst,
mut cond_code: FloatCC,
spec: FcmpSpec,
) -> FcmpCondResult {
let (flip_operands, inverted_equal) = match cond_code {
FloatCC::LessThan
| FloatCC::LessThanOrEqual
| FloatCC::UnorderedOrGreaterThan
| FloatCC::UnorderedOrGreaterThanOrEqual => {
cond_code = cond_code.reverse();
(true, false)
}
FloatCC::Equal => {
let inverted_equal = match spec {
FcmpSpec::Normal => false,
FcmpSpec::InvertEqual => {
cond_code = FloatCC::NotEqual; // same as .inverse()
true
}
};
(false, inverted_equal)
}
_ => (false, false),
};
// The only valid CC constructed with `from_floatcc` can be put in the flag
// register with a direct float comparison; do this here.
let op = match ctx.input_ty(insn, 0) {
types::F32 => SseOpcode::Ucomiss,
types::F64 => SseOpcode::Ucomisd,
_ => panic!("Bad input type to Fcmp"),
};
let inputs = &[InsnInput { insn, input: 0 }, InsnInput { insn, input: 1 }];
let (lhs_input, rhs_input) = if flip_operands {
(inputs[1], inputs[0])
} else {
(inputs[0], inputs[1])
};
let lhs = put_input_in_reg(ctx, lhs_input);
// See above in `emit_cmp()`. We must only use the reg/reg form of the
// comparison in order to avoid issues with merged loads.
let rhs = put_input_in_reg(ctx, rhs_input);
ctx.emit(Inst::xmm_cmp_rm_r(op, RegMem::reg(rhs), lhs));
let cond_result = match cond_code {
FloatCC::Equal => FcmpCondResult::AndConditions(CC::NP, CC::Z),
FloatCC::NotEqual if inverted_equal => {
FcmpCondResult::InvertedEqualOrConditions(CC::P, CC::NZ)
}
FloatCC::NotEqual if !inverted_equal => FcmpCondResult::OrConditions(CC::P, CC::NZ),
_ => FcmpCondResult::Condition(CC::from_floatcc(cond_code)),
};
cond_result
}
fn emit_bitrev<C: LowerCtx<I = Inst>>(ctx: &mut C, src: Reg, dst: Writable<Reg>, ty: Type) {
let bits = ty.bits();
let const_mask = if bits == 64 {
0xffff_ffff_ffff_ffff
} else {
(1u64 << bits) - 1
};
let tmp0 = ctx.alloc_tmp(types::I64).only_reg().unwrap();
let tmp1 = ctx.alloc_tmp(types::I64).only_reg().unwrap();
let tmp2 = ctx.alloc_tmp(types::I64).only_reg().unwrap();
ctx.emit(Inst::gen_move(tmp0, src, types::I64));
// Swap 1-bit units.
// tmp1 = src
ctx.emit(Inst::gen_move(tmp1, tmp0.to_reg(), types::I64));
// tmp2 = 0b0101..
ctx.emit(Inst::imm(
OperandSize::Size64,
0x5555_5555_5555_5555 & const_mask,
tmp2,
));
// tmp1 = src >> 1
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftRightLogical,
Some(1),
tmp1,
));
// tmp1 = (src >> 1) & 0b0101..
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(tmp2.to_reg()),
tmp1,
));
// tmp2 = src & 0b0101..
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(tmp0.to_reg()),
tmp2,
));
// tmp2 = (src & 0b0101..) << 1
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftLeft,
Some(1),
tmp2,
));
// tmp0 = (src >> 1) & 0b0101.. | (src & 0b0101..) << 1
ctx.emit(Inst::gen_move(tmp0, tmp2.to_reg(), types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Or,
RegMemImm::reg(tmp1.to_reg()),
tmp0,
));
// Swap 2-bit units.
ctx.emit(Inst::gen_move(tmp1, tmp0.to_reg(), types::I64));
ctx.emit(Inst::imm(
OperandSize::Size64,
0x3333_3333_3333_3333 & const_mask,
tmp2,
));
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftRightLogical,
Some(2),
tmp1,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(tmp2.to_reg()),
tmp1,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(tmp0.to_reg()),
tmp2,
));
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftLeft,
Some(2),
tmp2,
));
ctx.emit(Inst::gen_move(tmp0, tmp2.to_reg(), types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Or,
RegMemImm::reg(tmp1.to_reg()),
tmp0,
));
// Swap 4-bit units.
ctx.emit(Inst::gen_move(tmp1, tmp0.to_reg(), types::I64));
ctx.emit(Inst::imm(
OperandSize::Size64,
0x0f0f_0f0f_0f0f_0f0f & const_mask,
tmp2,
));
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftRightLogical,
Some(4),
tmp1,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(tmp2.to_reg()),
tmp1,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(tmp0.to_reg()),
tmp2,
));
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftLeft,
Some(4),
tmp2,
));
ctx.emit(Inst::gen_move(tmp0, tmp2.to_reg(), types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Or,
RegMemImm::reg(tmp1.to_reg()),
tmp0,
));
if bits > 8 {
// Swap 8-bit units.
ctx.emit(Inst::gen_move(tmp1, tmp0.to_reg(), types::I64));
ctx.emit(Inst::imm(
OperandSize::Size64,
0x00ff_00ff_00ff_00ff & const_mask,
tmp2,
));
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftRightLogical,
Some(8),
tmp1,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(tmp2.to_reg()),
tmp1,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(tmp0.to_reg()),
tmp2,
));
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftLeft,
Some(8),
tmp2,
));
ctx.emit(Inst::gen_move(tmp0, tmp2.to_reg(), types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Or,
RegMemImm::reg(tmp1.to_reg()),
tmp0,
));
}
if bits > 16 {
// Swap 16-bit units.
ctx.emit(Inst::gen_move(tmp1, tmp0.to_reg(), types::I64));
ctx.emit(Inst::imm(
OperandSize::Size64,
0x0000_ffff_0000_ffff & const_mask,
tmp2,
));
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftRightLogical,
Some(16),
tmp1,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(tmp2.to_reg()),
tmp1,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(tmp0.to_reg()),
tmp2,
));
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftLeft,
Some(16),
tmp2,
));
ctx.emit(Inst::gen_move(tmp0, tmp2.to_reg(), types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Or,
RegMemImm::reg(tmp1.to_reg()),
tmp0,
));
}
if bits > 32 {
// Swap 32-bit units.
ctx.emit(Inst::gen_move(tmp1, tmp0.to_reg(), types::I64));
ctx.emit(Inst::imm(
OperandSize::Size64,
0x0000_0000_ffff_ffff & const_mask,
tmp2,
));
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftRightLogical,
Some(32),
tmp1,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(tmp2.to_reg()),
tmp1,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::reg(tmp0.to_reg()),
tmp2,
));
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftLeft,
Some(32),
tmp2,
));
ctx.emit(Inst::gen_move(tmp0, tmp2.to_reg(), types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Or,
RegMemImm::reg(tmp1.to_reg()),
tmp0,
));
}
ctx.emit(Inst::gen_move(dst, tmp0.to_reg(), types::I64));
}
fn emit_shl_i128<C: LowerCtx<I = Inst>>(
ctx: &mut C,
src: ValueRegs<Reg>,
dst: ValueRegs<Writable<Reg>>,
amt_src: Reg,
) {
let src_lo = src.regs()[0];
let src_hi = src.regs()[1];
let dst_lo = dst.regs()[0];
let dst_hi = dst.regs()[1];
// mov tmp1, src_lo
// shl tmp1, amt_src
// mov tmp2, src_hi
// shl tmp2, amt_src
// mov amt, 64
// sub amt, amt_src
// mov tmp3, src_lo
// shr tmp3, amt
// xor dst_lo, dst_lo
// test amt_src, 127
// cmovz tmp3, dst_lo
// or tmp3, tmp2
// mov amt, amt_src
// and amt, 64
// cmovz dst_hi, tmp3
// cmovz dst_lo, tmp1
// cmovnz dst_hi, tmp1
let tmp1 = ctx.alloc_tmp(types::I64).only_reg().unwrap();
let tmp2 = ctx.alloc_tmp(types::I64).only_reg().unwrap();
let tmp3 = ctx.alloc_tmp(types::I64).only_reg().unwrap();
let amt = ctx.alloc_tmp(types::I64).only_reg().unwrap();
ctx.emit(Inst::gen_move(tmp1, src_lo, types::I64));
ctx.emit(Inst::gen_move(
Writable::from_reg(regs::rcx()),
amt_src,
types::I64,
));
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftLeft,
None,
tmp1,
));
ctx.emit(Inst::gen_move(tmp2, src_hi, types::I64));
ctx.emit(Inst::gen_move(
Writable::from_reg(regs::rcx()),
amt_src,
types::I64,
));
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftLeft,
None,
tmp2,
));
ctx.emit(Inst::imm(OperandSize::Size64, 64, amt));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Sub,
RegMemImm::reg(amt_src),
amt,
));
ctx.emit(Inst::gen_move(tmp3, src_lo, types::I64));
ctx.emit(Inst::gen_move(
Writable::from_reg(regs::rcx()),
amt.to_reg(),
types::I64,
));
ctx.emit(Inst::shift_r(
OperandSize::Size64,
ShiftKind::ShiftRightLogical,
None,
tmp3,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Xor,
RegMemImm::reg(dst_lo.to_reg()),
dst_lo,
));
ctx.emit(Inst::test_rmi_r(
OperandSize::Size64,
RegMemImm::imm(127),
amt_src,
));
ctx.emit(Inst::cmove(
OperandSize::Size64,
CC::Z,
RegMem::reg(dst_lo.to_reg()),
tmp3,
));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Or,
RegMemImm::reg(tmp2.to_reg()),
tmp3,
));
// This isn't semantically necessary, but it keeps the
// register allocator happy, because it cannot otherwise
// infer that cmovz + cmovnz always defines dst_hi.
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Xor,
RegMemImm::reg(dst_hi.to_reg()),
dst_hi,
));
ctx.emit(Inst::gen_move(amt, amt_src, types::I64));
ctx.emit(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::And,
RegMemImm::imm(64),
amt,
));
ctx.emit(Inst::cmove(