
RISC-V ABIs Specification
Version 1.0-rc2: Frozen



Table of Contents
Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
Terms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
RISC-V Calling Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

1. Register Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
1.1. Integer Register Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
1.2. Floating-point Register Convention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
1.3. Vector Register Convention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2. Procedure Calling Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
2.1. Integer Calling Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
2.2. Hardware Floating-point Calling Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
2.3. ILP32E Calling Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
2.4. Named ABIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
2.5. Default ABIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

3. Calling Convention for System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
4. C/C++ type details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

4.1. C/C++ type sizes and alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
4.2. C/C++ type representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
4.3. va_list, va_start, and va_arg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Appendix A: Linux-specific ABI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
A.1. Linux-specific C type sizes and alignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
A.2. Linux-specific C type representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

RISC-V ELF Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
5. Code models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

5.1. Small code model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
5.2. Medium code model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
5.3. Medium position independent code model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

6. Dynamic Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
7. C++ Name Mangling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
8. ELF Object Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

8.1. File Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
8.2. Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
8.3. String Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
8.4. Symbol Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
8.5. Relocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

8.5.1. Calculation Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
8.5.2. Field Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
8.5.3. Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
8.5.4. Absolute Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
8.5.5. Global Offset Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
8.5.6. Program Linkage Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
8.5.7. Procedure Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
8.5.8. PC-Relative Jumps and Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30



8.5.9. PC-Relative Symbol Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
8.6. Thread Local Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

8.6.1. Local Exec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
8.6.2. Initial Exec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
8.6.3. Global Dynamic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

8.7. Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
8.7.1. Section Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
8.7.2. Special Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

8.8. Program Header Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
8.9. Note Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
8.10. Dynamic Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
8.11. Hash Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
8.12. Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

8.12.1. List of attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
8.12.2. Detailed attribute description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

9. Code relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

RISC-V DWARF Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
10. DWARF Debugging Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40
11. DWARF Register Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42



Preamble
Contributors to all versions of the spec in alphabetical order:

Alex Bradbury, Andrew Burgess, Chih-Mao Chen, Zakk Chen, Kito Cheng, Nelson Chu, Michael Clark, Jessica
Clarke, Palmer Dabbelt, Sam Elliott, Gonzalo Brito Gadeschi, Sebastian Huber, Roger Ferrer Ibanez, Quey-Liang
Kao, Nick Knight, Luís Marques, Evandro Menezes, Max Nordlund, Stefan O’Rear, Konrad Schwarz, Fangrui
Song, Hsiangkai Wang, Andrew Waterman, Jim Wilson

It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full license
text is available at creativecommons.org/licenses/by/4.0/.

Please cite as: `RISC-V ABIs Specification, Document Version 1.0-rc2', Editors Kito Cheng and Jessica Clarke,
RISC-V International, April 2022.

The latest version of this document can be found here: github.com/riscv-non-isa/riscv-elf-psabi-doc.

This specification is written in collaboration with the development communities of the major open-source
toolchain and operating system communities, and as such specifies what has been agreed upon and implemented.
As a result, any changes to this specification that are not backwards-compatible would break ABI compatibility
for those toolchains, which is not permitted unless for features explicitly marked as experimental, and so will not
be made unless absolutely necessary, regardless of whether the specification is a pre-release version, ratified
version or anything in between. This means any version of this specification published at the above link can be
regarded as stable in the technical sense of the word (but not necessarily in the official RISC-V International
specification state meaning), with the official specification state being an indicator of the completeness, clarity
and general editorial quality of the specification.

Preamble | Page 1

RISC-V ABIs Specification | © RISC-V

https://creativecommons.org/licenses/by/4.0/
https://github.com/riscv-non-isa/riscv-elf-psabi-doc


Introduction
This specification provides the processor-specific application binary interface document for RISC-V.

This specification consists of the following three parts:

• Calling convention
• ELF specification
• DWARF specification

| Page 2
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Terms and Abbreviations
This specification uses the following terms and abbreviations:

Term Meaning

ABI Application Binary Interface

gABI Generic System V Application Binary
Interface

ELF Executable and Linking Format

psABI Processor-Specific ABI

DWARF Debugging With Arbitrary Record Formats

GOT Global Offset Table

PLT Program Linkage Table

PC Program Counter

TLS Thread-Local Storage

NTBS Null-Terminated Byte String

XLEN The width of an integer register in bits

FLEN The width of a floating-point register in bits

| Page 3
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RISC-V Calling Conventions
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Chapter 1. Register Convention
1.1. Integer Register Convention
Name ABI Mnemonic Meaning Preserved across calls?

x0 zero Zero  — (Immutable)

x1 ra Return address No

x2 sp Stack pointer Yes

x3 gp Global pointer  — (Unallocatable)

x4 tp Thread pointer  — (Unallocatable)

x5 - x7 t0 - t2 Temporary registers No

x8 - x9 s0 - s1 Callee-saved registers Yes

x10 - x17 a0 - a7 Argument registers No

x18 - x27 s2 - s11 Callee-saved registers Yes

x28 - x31 t3 - t6 Temporary registers No

Table 1. Integer register convention

In the standard ABI, procedures should not modify the integer registers tp and gp, because signal handlers may
rely upon their values.

The presence of a frame pointer is optional. If a frame pointer exists it must reside in x8 (s0), the register
remains callee-saved.

1.2. Floating-point Register Convention
Name ABI Mnemonic Meaning Preserved across calls?

f0 - f7 ft0 - ft7 Temporary registers No

f8 - f9 fs0 - fs1 Callee-saved registers Yes*

f10 - f17 fa0 - fa7 Argument registers No

f18 - f27 fs2 - fs11 Callee-saved registers Yes*

f28 - f31 ft8 - ft11 Temporary registers No

Table 2. Floating-point register convention

*: Floating-point values in callee-saved registers are only preserved across calls if they are no larger than the
width of a floating-point register in the targeted ABI. Therefore, these registers can always be considered
temporaries if targeting the base integer calling convention.

The Floating-Point Control and Status Register (fcsr) must have thread storage duration in accordance with C11
section 7.6 "Floating-point environment <fenv.h>".

1.1. Integer Register Convention | Page 5
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1.3. Vector Register Convention
Name ABI

Mnemonic
Meaning Preserved across

calls?

v0-v31 Temporary registers No

vl Vector length No

vtype Vector data type register No

Table 3. Vector register convention

Vector registers are not used for passing arguments or return values; we intend to define a new calling
convention variant to allow that as a future software optimization.

Procedures may assume that vstart is zero upon entry. Procedures may assume that vstart is zero upon
return from a procedure call.


Application software should normally not write vstart explicitly. Any procedure that does
explicitly write vstart to a nonzero value must zero vstart before either returning or calling
another procedure.

1.3. Vector Register Convention | Page 6
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Chapter 2. Procedure Calling Convention
2.1. Integer Calling Convention
The base integer calling convention provides eight argument registers, a0-a7, the first two of which are also used
to return values.

Scalars that are at most XLEN bits wide are passed in a single argument register, or on the stack by value if
none is available. When passed in registers or on the stack, integer scalars narrower than XLEN bits are widened
according to the sign of their type up to 32 bits, then sign-extended to XLEN bits. When passed in registers or
on the stack, floating-point types narrower than XLEN bits are widened to XLEN bits, with the upper bits
undefined.

Scalars that are 2×XLEN bits wide are passed in a pair of argument registers, with the low-order XLEN bits in
the lower-numbered register and the high-order XLEN bits in the higher-numbered register. If no argument
registers are available, the scalar is passed on the stack by value. If exactly one register is available, the low-
order XLEN bits are passed in the register and the high-order XLEN bits are passed on the stack.

Scalars wider than 2×XLEN are passed by reference and are replaced in the argument list with the address.

Aggregates whose total size is no more than XLEN bits are passed in a register, with the fields laid out as
though they were passed in memory. If no register is available, the aggregate is passed on the stack. Aggregates
whose total size is no more than 2×XLEN bits are passed in a pair of registers; if only one register is available,
the first XLEN bits are passed in a register and the remaining bits are passed on the stack. If no registers are
available, the aggregate is passed on the stack. Bits unused due to padding, and bits past the end of an
aggregate whose size in bits is not divisible by XLEN, are undefined.

Aggregates or scalars passed on the stack are aligned to the greater of the type alignment and XLEN bits, but
never more than the stack alignment.

Aggregates larger than 2×XLEN bits are passed by reference and are replaced in the argument list with the
address, as are C++ aggregates with nontrivial copy constructors, destructors, or vtables.

Empty structs or union arguments or return values are ignored by C compilers which support them as a non-
standard extension. This is not the case for C++, which requires them to be sized types.

Bitfields are packed in little-endian fashion. A bitfield that would span the alignment boundary of its integer type
is padded to begin at the next alignment boundary. For example, struct { int x : 10; int y : 12; } is a
32-bit type with x in bits 9-0, y in bits 21-10, and bits 31-22 undefined. By contrast, struct { short x : 10;
short y : 12; } is a 32-bit type with x in bits 9-0, y in bits 27-16, and bits 31-28 and 15-10 undefined.

Arguments passed by reference may be modified by the callee.

Floating-point reals are passed the same way as aggregates of the same size, complex floating-point numbers are
passed the same way as a struct containing two floating-point reals. (This constraint changes when the integer
calling convention is augmented by the hardware floating-point calling convention.)

In the base integer calling convention, variadic arguments are passed in the same manner as named arguments,
with one exception. Variadic arguments with 2×XLEN-bit alignment and size at most 2×XLEN bits are passed
in an aligned register pair (i.e., the first register in the pair is even-numbered), or on the stack by value if none
is available. After a variadic argument has been passed on the stack, all future arguments will also be passed on
the stack (i.e. the last argument register may be left unused due to the aligned register pair rule).

Values are returned in the same manner as a first named argument of the same type would be passed. If such an

2.1. Integer Calling Convention | Page 7
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argument would have been passed by reference, the caller allocates memory for the return value, and passes the
address as an implicit first parameter.


There is no requirement that the address be returned from the function and so software
should not assume that a0 will hold the address of the return value on return.

The stack grows downwards (towards lower addresses) and the stack pointer shall be aligned to a 128-bit
boundary upon procedure entry. The first argument passed on the stack is located at offset zero of the stack
pointer on function entry; following arguments are stored at correspondingly higher addresses.

In the standard ABI, the stack pointer must remain aligned throughout procedure execution. Non-standard ABI
code must realign the stack pointer prior to invoking standard ABI procedures. The operating system must
realign the stack pointer prior to invoking a signal handler; hence, POSIX signal handlers need not realign the
stack pointer. In systems that service interrupts using the interruptee’s stack, the interrupt service routine must
realign the stack pointer if linked with any code that uses a non-standard stack-alignment discipline, but need
not realign the stack pointer if all code adheres to the standard ABI.

Procedures must not rely upon the persistence of stack-allocated data whose addresses lie below the stack
pointer.

Registers s0-s11 shall be preserved across procedure calls. No floating-point registers, if present, are preserved
across calls. (This property changes when the integer calling convention is augmented by the hardware floating-
point calling convention.)

2.2. Hardware Floating-point Calling Convention
The hardware floating-point calling convention adds eight floating-point argument registers, fa0-fa7, the first two
of which are also used to return values. Values are passed in floating-point registers whenever possible, whether
or not the integer registers have been exhausted.

The remainder of this section applies only to named arguments. Variadic arguments are passed according to the
integer calling convention.

For the purposes of this section, FLEN refers to the width of a floating-point register in the ABI. The ABI’s
FLEN must be no wider than the ISA’s FLEN. The ISA might have wider floating-point registers than the ABI.

For the purposes of this section, "struct" refers to a C struct with its hierarchy flattened, including any array
fields. That is, struct { struct { float f[1]; } g[2]; } and struct { float f; float g; } are
treated the same. Fields containing empty structs or unions are ignored while flattening, even in C++, unless
they have nontrivial copy constructors or destructors. Fields containing zero-length bit-fields are ignored while
flattening. Attributes such as aligned or packed do not interfere with a struct’s eligibility for being passed in
registers according to the rules below, i.e. struct { int i; double d; } and struct attribute packed {
int i; double d } are treated the same, as are struct { float f; float g; } and struct { float f;
float g attribute aligned (8); }.

A real floating-point argument is passed in a floating-point argument register if it is no more than FLEN bits
wide and at least one floating-point argument register is available. Otherwise, it is passed according to the
integer calling convention. When a floating-point argument narrower than FLEN bits is passed in a floating-point
register, it is 1-extended (NaN-boxed) to FLEN bits.

A struct containing just one floating-point real is passed as though it were a standalone floating-point real.

A struct containing two floating-point reals is passed in two floating-point registers, if neither is more than FLEN
bits wide and at least two floating-point argument registers are available. (The registers need not be an aligned
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pair.) Otherwise, it is passed according to the integer calling convention.

A complex floating-point number, or a struct containing just one complex floating-point number, is passed as
though it were a struct containing two floating-point reals.

A struct containing one floating-point real and one integer (or bitfield), in either order, is passed in a floating-
point register and an integer register, without extending the integer to XLEN bits, provided the floating-point
real is no more than FLEN bits wide and the integer is no more than XLEN bits wide, and at least one floating-
point argument register and at least one integer argument register is available. Otherwise, it is passed according
to the integer calling convention.

Unions are never flattened and are always passed according to the integer calling convention.

Values are returned in the same manner as a first named argument of the same type would be passed.

Floating-point registers fs0-fs11 shall be preserved across procedure calls, provided they hold values no more than
FLEN bits wide.

2.3. ILP32E Calling Convention


RV32E is not a ratified base ISA and so we cannot guarantee the stability of ILP32E, in
contrast with the rest of this document. This documents the current implementation in GCC
as of the time of writing, but may be subject to change.

The ILP32E calling convention is designed to be usable with the RV32E ISA. This calling convention is the same
as the integer calling convention, except for the following differences. The stack pointer need only be aligned to
a 32-bit boundary. Registers x16-x31 do not participate in the calling convention, so there are only six argument
registers, a0-a5, only two callee-saved registers, s0-s1, and only three temporaries, t0-t2.

If used with an ISA that has any of the registers x16-x31 and f0-f31, then these registers are considered
temporaries.

The ILP32E calling convention is not compatible with ISAs that have registers that require load and store
alignments of more than 32 bits. In particular, this calling convention must not be used with the D ISA
extension.

2.4. Named ABIs
This specification defines the following named ABIs:

ILP32
Integer calling-convention only, hardware floating-point calling convention is not used (i.e. ELFCLASS32 and
EF_RISCV_FLOAT_ABI_SOFT).

ILP32F
ILP32 with hardware floating-point calling convention for FLEN=32 (i.e. ELFCLASS32 and
EF_RISCV_FLOAT_ABI_SINGLE).

ILP32D
ILP32 with hardware floating-point calling convention for FLEN=64 (i.e. ELFCLASS32 and
EF_RISCV_FLOAT_ABI_DOUBLE).
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ILP32E
ILP32E calling-convention only, hardware floating-point calling convention is not used (i.e. ELFCLASS32,
EF_RISCV_FLOAT_ABI_SOFT, and EF_RISCV_RVE).

LP64
Integer calling-convention only, hardware floating-point calling convention is not used (i.e. ELFCLASS64 and
EF_RISCV_FLOAT_ABI_SOFT).

LP64F
LP64 with hardware floating-point calling convention for FLEN=32 (i.e. ELFCLASS64 and
EF_RISCV_FLOAT_ABI_SINGLE).

LP64D
LP64 with hardware floating-point calling convention for FLEN=64 (i.e. ELFCLASS64 and
EF_RISCV_FLOAT_ABI_DOUBLE).

LP64Q
LP64 with hardware floating-point calling convention for FLEN=128 (i.e. ELFCLASS64 and
EF_RISCV_FLOAT_ABI_QUAD).

The ILP32* ABIs are only compatible with RV32* ISAs, and the LP64* ABIs are only compatible with RV64*
ISAs. A future version of this specification may define an ILP32 ABI for the RV64 ISA, but currently this is not a
supported operating mode.

The *F ABIs require the *F ISA extension, the *D ABIs require the *D ISA extension, and the LP64Q ABI
requires the Q ISA extension.


This means code targeting the Zfinx extension always uses the ILP32, ILP32E or LP64
integer calling-convention only ABIs as there is no dedicated hardware floating-point register
file.

2.5. Default ABIs
While various different ABIs are technically possible, for software compatibility reasons it is strongly
recommended to use the following default ABIs for specific architectures:

on RV32G ILP32D

on RV64G LP64D


Although RV64GQ systems can technically use LP64Q, it is strongly recommended to use
LP64D on general-purpose RV64GQ systems for compatibility with standard RV64G software.
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Chapter 3. Calling Convention for System Calls
The calling convention for system calls does not fall within the scope of this document. Please refer to the
documentation of the RISC-V execution environment interface (e.g OS kernel ABI, SBI).
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Chapter 4. C/C++ type details
4.1. C/C++ type sizes and alignments
There are two conventions for C/C++ type sizes and alignments.

ILP32, ILP32F, ILP32D, and ILP32E
Use the following type sizes and alignments (based on the ILP32 convention):

Type Size (Bytes) Alignment (Bytes)

bool/_Bool 1 1

char 1 1

short 2 2

int 4 4

long 4 4

long long 8 8

void * 4 4

_Float16 2 2

float 4 4

double 8 8

long double 16 16

float _Complex 8 4

double _Complex 16 8

long double _Complex 32 16

Table 4. C/C++ type sizes and alignments for RV32

LP64, LP64F, LP64D, and LP64Q
Use the following type sizes and alignments (based on the LP64 convention):

Type Size (Bytes) Alignment (Bytes)

bool/_Bool 1 1

char 1 1

short 2 2

int 4 4

long 8 8

long long 8 8

__int128 16 16

void * 8 8
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Type Size (Bytes) Alignment (Bytes)

_Float16 2 2

float 4 4

double 8 8

long double 16 16

float _Complex 8 4

double _Complex 16 8

long double _Complex 32 16

Table 5. C/C++ type sizes and alignments for RV64

The alignment of max_align_t is 16.

CHAR_BIT is 8.

Structs and unions are aligned to the alignment of their most strictly aligned member. The size of any object is a
multiple of its alignment.

4.2. C/C++ type representations
char is unsigned.

Booleans (bool/_Bool) stored in memory or when being passed as scalar arguments are either 0 (false) or 1
(true).

A null pointer (for all types) has the value zero.

_Float16 is as defined in the C ISO/IEC TS 18661-3 extension.

_Complex types have the same layout as a struct containing two fields of the corresponding real type (float,
double, or long double), with the first member holding the real part and the second member holding the
imaginary part.

4.3. va_list, va_start, and va_arg
The va_list type is void*. A callee with variadic arguments is responsible for copying the contents of registers
used to pass variadic arguments to the vararg save area, which must be contiguous with arguments passed on
the stack. The va_start macro initializes its va_list argument to point to the start of the vararg save area.
The va_arg macro will increment its va_list argument according to the size of the given type, taking into
account the rules about 2×XLEN aligned arguments being passed in "aligned" register pairs.
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Appendix A: Linux-specific ABI


This section of the RISC-V calling convention specification only applies to Linux-based
systems.

In order to ensure compatibility between different implementations of the C library for Linux, we provide some
extra definitions which only apply on those systems. These are noted in this section.

A.1. Linux-specific C type sizes and alignments
The following definitions apply for all ABIs defined in this document. Here there is no differentiation between
ILP32 and LP64 ABIs.

Type Size (Bytes) Alignment (Bytes)

wchar_t 4 4

wint_t 4 4

Table 6. Linux-specific C type sizes and alignments

A.2. Linux-specific C type representations
The following definitions apply for all ABIs defined in this document. Here there is no differentiation between
ILP32 and LP64 ABIs.

wchar_t is signed. wint_t is unsigned.
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Chapter 5. Code models
The RISC-V architecture constrains the addressing of positions in the address space. There is no single
instruction that can refer to an arbitrary memory position using a literal as its argument. Rather, instructions
exist that, when combined together, can then be used to refer to a memory position via its literal. And, when
not, other data structures are used to help the code to address the memory space. The coding conventions
governing their use are known as code models.

However, some code models can’t access the whole address space. The linker may raise an error if it cannot
adjust the instructions to access the target address in the current code model.

5.1. Small code model
The small code model, or medlow, allows the code to address the whole RV32 address space or the lower 2 GiB
and highest 2GiB of the RV64 address space (0xFFFFFFFF7FFFF800 ~ 0xFFFFFFFFFFFFFFFF and 0x0 ~
0x000000007FFFF7FF). By using the instructions lui and ld or st, when referring to an object, or addi, when
calculating an address literal, for example, a 32-bit address literal can be produced.

The following instructions show how to load a value, store a value, or calculate an address in the medlow code
model.

    # Load value from a symbol
    lui  a0, %hi(symbol)
    lw   a0, %lo(symbol)(a0)

    # Store value to a symbol
    lui  a0, %hi(symbol)
    sw   a1, %lo(symbol)(a0)

    # Calculate address
    lui  a0, %hi(symbol)
    addi a0, a0, %lo(symbol)


The ranges on RV64 are not 0x0 ~ 0x000000007FFFFFFF and 0xFFFFFFFF80000000 ~
0xFFFFFFFFFFFFFFFF due to RISC-V’s sign-extension of immediates; the following code
fragments show where the ranges come from:

# Largest postive number:
lui a0, 0x7ffff # a0 = 0x7ffff000
addi a0, 0x7ff # a0 = a0 + 2047 = 0x000000007FFFF7FF

# Smallest negative number:
lui a0, 0x80000 # a0 = 0xffffffff80000000
addi a0, a0, -0x800 # a0 = a0 + -2048 = 0xFFFFFFFF7FFFF800

5.1. Small code model | Page 16
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5.2. Medium code model
The medium code model, or medany, allows the code to address the range between -2 GiB and +2 GiB from its
position. By using the instructions auipc and ld or st, when referring to an object, or addi, when calculating
an address literal, for example, a signed 32-bit offset, relative to the value of the pc register, can be produced.

As a special edge-case, undefined weak symbols must still be supported, whose addresses will be 0 and may be
out of range depending on the address at which the code is linked. Any references to possibly-undefined weak
symbols should be made indirectly through the GOT as is used for position-independent code. Not doing so is
deprecated and a future version of this specification will require using the GOT, not just advise.


This is not yet a requirement as existing toolchains predating this part of the specification do
not adhere to this, and without improvements to linker relaxation support doing so would
regress performance and code size.

The following instructions show how to load a value, store a value, or calculate an address in the medany code
model.

    # Load value from a symbol
0:  auipc a0, %pcrel_hi(symbol)
    lw    a0, %pcrel_lo(0b)(a0)

    # Store value to a symbol
1:  auipc a0, %pcrel_hi(symbol)
    sw    a1, %pcrel_lo(1b)(a0)

    # Calculate address
2:  auipc a0, %pcrel_hi(symbol)
    addi  a0, a0, %pcrel_lo(2b)


Although the generated code is technically position independent, it’s not suitable for ELF
shared libraries due to differing symbol interposition rules; for that, please use the medium
position independent code model below.

5.3. Medium position independent code model
This model is similar to the medium code model, but uses the global offset table (GOT) for non-local symbol
addresses.
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    # Load value from a local symbol
0:  auipc a0, %pcrel_hi(symbol)
    lw    a0, %pcrel_lo(0b)(a0)

    # Store value to a local symbol
1:  auipc a0, %pcrel_hi(symbol)
    sw    a1, %pcrel_lo(1b)(a0)

    # Calculate address of a local symbol
2:  auipc a0, %pcrel_hi(symbol)
    addi  a0, a0, %pcrel_lo(2b)

    # Calculate address of non-local symbol
3:  auipc  a0, %got_pcrel_hi(symbol)
    l[w|d] a0, a0, %pcrel_lo(3b)
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Chapter 6. Dynamic Linking
Any functions that use registers in a way that is incompatible with the register convention of the ABI in use
must be annotated with STO_RISCV_VARIANT_CC, as defined in Section 8.4.



Vector registers have a variable size depending on the hardware implementation and can be
quite large. Saving/restoring all these vector arguments in a run-time linker’s lazy resolver
would use a large amount of stack space and hurt performance. This attribute allows vector
registers to not be part of the standard calling convention so run-time linkers are not required
to save/restore them and can instead eagerly bind such functions.
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Chapter 7. C++ Name Mangling
C++ name mangling for RISC-V follows the Itanium C++ ABI [itanium-cxx-abi]; there are no RISC-V specific
mangling rules.

See the "Type encodings" section in Itanium C++ ABI for more detail on how to mangle types.
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Chapter 8. ELF Object Files
The ELF object file format for RISC-V follows the Generic System V Application Binary Interface [gabi]
("gABI"); this specification only describes RISC-V-specific definitions.

8.1. File Header
The section below lists the defined RISC-V-specific values for several ELF header fields; any fields not listed in
this section have no RISC-V-specific values.

e_ident
EI_CLASS

Specifies the base ISA, either RV32 or RV64. Linking RV32 and RV64 code together is not supported.

ELFCLASS64 ELF-64 Object File

ELFCLASS32 ELF-32 Object File

EI_DATA
Specifies the endianness; either big-endian or little-endian. Linking big-endian and little-endian code
together is not supported.

ELFDATA2LSB Little-endian Object File

ELFDATA2MSB Big-endian Object File

e_machine
Identifies the machine this ELF file targets. Always contains EM_RISCV (243) for RISC-V ELF files. We only
support RISC-V v2 family ISAs, this support is implicit.

e_flags
Describes the format of this ELF file. These flags are used by the linker to disallow linking ELF files with
incompatible ABIs together, Table 7 shows the layout of e_flags, and flag details are listed below.

Bit 0 Bits 1 - 2 Bit 3 Bit 4 Bits 5 - 23 Bits 24 - 31

RVC Float ABI RVE TSO Reserved Non-standard extensions

Table 7. Layout of e_flags

EF_RISCV_RVC (0x0001)
This bit is set when the binary targets the C ABI, which allows instructions to be aligned to 16-bit
boundaries (the base RV32 and RV64 ISAs only allow 32-bit instruction alignment). When linking objects
which specify EF_RISCV_RVC, the linker is permitted to use RVC instructions such as C.JAL in the
relaxation process.
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EF_RISCV_FLOAT_ABI_SOFT (0x0000)
EF_RISCV_FLOAT_ABI_SINGLE (0x0002)
EF_RISCV_FLOAT_ABI_DOUBLE (0x0004)
EF_RISCV_FLOAT_ABI_QUAD (0x0006)

These flags identify the floating point ABI in use for this ELF file. They store the largest floating-point
type that ends up in registers as part of the ABI (but do not control if code generation is allowed to use
floating-point internally). The rule is that if you have a floating-point type in a register, then you also
have all smaller floating-point types in registers. For example _DOUBLE would store "float" and
"double" values in F registers, but would not store "long double" values in F registers. If none of the float
ABI flags are set, the object is taken to use the soft-float ABI.

EF_RISCV_FLOAT_ABI (0x0006)
This macro is used as a mask to test for one of the above floating-point ABIs, e.g., (e_flags &
EF_RISCV_FLOAT_ABI) == EF_RISCV_FLOAT_ABI_DOUBLE.

EF_RISCV_RVE (0x0008)
This bit is set when the binary targets the E ABI.

EF_RISCV_TSO (0x0010)
This bit is set when the binary requires the RVTSO memory consistency model.

Until such a time that the Reserved bits (0x00ffffe0) are allocated by future versions of this specification,
they shall not be set by standard software. Non-standard extensions are free to use bits 24-31 for any
purpose. This many conflict with other non-standard extensions.



There is no provision for compatibility between conflicting uses of the e_flags bits
reserved for non-standard extensions, and many standard RISC-V tools will ignore them.
Do not use them unless you control both the toolchain and the operating system, and the
ABI differences are so significant they cannot be done with a .RISCV.attributes tag nor an
ELF note, such as using a different syscall ABI.

8.2. Sections
There are no RISC-V specific definitions relating to ELF sections.

8.3. String Tables
There are no RISC-V specific definitions relating to ELF string tables.

8.4. Symbol Table
st_other

The lower 2 bits are used to specify a symbol’s visibility. The remaining 6 bits have no defined meaning in
the ELF gABI. We use the highest bit to mark functions that do not follow the standard calling convention
for the ABI in use.

The defined processor-specific st_other flags are listed in Table 8.
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Name Mask

STO_RISCV_VARIANT_CC 0x80

Table 8. RISC-V-specific st_other flags

See Chapter 6 for the meaning of STO_RISCV_VARIANT_CC.

__global_pointer$ must be exported in the dynamic symbol table of dynamically-linked executables if there
are any GP-relative accesses present in the executable.

8.5. Relocations
RISC-V is a classical RISC architecture that has densely packed non-word sized instruction immediate values.
While the linker can make relocations on arbitrary memory locations, many of the RISC-V relocations are
designed for use with specific instructions or instruction sequences. RISC-V has several instruction specific
encodings for PC-Relative address loading, jumps, branches and the RVC compressed instruction set.

The purpose of this section is to describe the RISC-V specific instruction sequences with their associated
relocations in addition to the general purpose machine word sized relocations that are used for symbol addresses
in the Global Offset Table or DWARF meta data.

Table 9 provides details of the RISC-V ELF relocations; the meaning of each column is given below:

Enum
The number of the relocation, encoded in the r_info field

ELF Reloc Type
The name of the relocation, omitted the prefix of R_RISCV_ here.

Type
Whether the relocation is a static or runtime relocation:

• Static relocations are always resolved by the static linker
• Runtime relocations can be resolved by both static and dynamic linkers

Field
Describes the set of bits affected by this relocation; see Section 8.5.2 for the definitions of the individual
types

Calculation
Formula for how to resolve the relocation value; definitions of the symbols can be found in Section 8.5.1

Description
Additional information about the relocation

Enum ELF Reloc Type Type Field / Calculation Description

0 NONE None

1 32 Runtime word32 32-bit relocation

S + A
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Enum ELF Reloc Type Type Field / Calculation Description

2 64 Runtime word64 64-bit relocation

S + A

3 RELATIVE Runtime wordclass Relocation against a local symbol in a
shared objectB + A

4 COPY Runtime Must be in executable; not allowed in
shared library

5 JUMP_SLOT Runtime wordclass Indicates the symbol associated with a
PLT entryS

6 TLS_DTPMOD32 Runtime word32

TLSMODULE

7 TLS_DTPMOD64 Runtime word64

TLSMODULE

8 TLS_DTPREL32 Runtime word32

S + A -
TLS_DTV_OFFSET

9 TLS_DTPREL64 Runtime word64

S + A -
TLS_DTV_OFFSET

10 TLS_TPREL32 Runtime word32

S + A + TLSOFFSET

11 TLS_TPREL64 Runtime word64

S + A + TLSOFFSET

16 BRANCH Static B-Type 12-bit PC-relative branch offset

S + A - P

17 JAL Static J-Type 20-bit PC-relative jump offset

S + A - P

18 CALL Static U+I-Type 32-bit PC-relative function call, macros
call, tailS + A - P

19 CALL_PLT Static U+I-Type 32-bit PC-relative function call, macros
call, tail (PIC)S + A - P

20 GOT_HI20 Static U-Type High 20 bits of 32-bit PC-relative GOT
access, %got_pcrel_hi(symbol)G + GOT + A - P

21 TLS_GOT_HI20 Static U-Type High 20 bits of 32-bit PC-relative TLS IE
GOT access, macro la.tls.ie
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Enum ELF Reloc Type Type Field / Calculation Description

22 TLS_GD_HI20 Static U-Type High 20 bits of 32-bit PC-relative TLS GD
GOT reference, macro la.tls.gd

23 PCREL_HI20 Static U-Type High 20 bits of 32-bit PC-relative
reference, %pcrel_hi(symbol)S + A - P

24 PCREL_LO12_I Static I-type Low 12 bits of a 32-bit PC-relative,
%pcrel_lo(address of %pcrel_hi),
the addend must be 0S - P

25 PCREL_LO12_S Static S-Type Low 12 bits of a 32-bit PC-relative,
%pcrel_lo(address of %pcrel_hi),
the addend must be 0S - P

26 HI20 Static U-Type High 20 bits of 32-bit absolute address,
%hi(symbol)S + A

27 LO12_I Static I-Type Low 12 bits of 32-bit absolute address,
%lo(symbol)S + A

28 LO12_S Static S-Type Low 12 bits of 32-bit absolute address,
%lo(symbol)S + A

29 TPREL_HI20 Static U-Type High 20 bits of TLS LE thread pointer
offset, %tprel_hi(symbol)

30 TPREL_LO12_I Static I-Type Low 12 bits of TLS LE thread pointer
offset, %tprel_lo(symbol)

31 TPREL_LO12_S Static S-Type Low 12 bits of TLS LE thread pointer
offset, %tprel_lo(symbol)

32 TPREL_ADD Static TLS LE thread pointer usage,
%tprel_add(symbol)

33 ADD8 Static word8 8-bit label addition

V + S + A

34 ADD16 Static word16 16-bit label addition

V + S + A

35 ADD32 Static word32 32-bit label addition

V + S + A

36 ADD64 Static word64 64-bit label addition

V + S + A

37 SUB8 Static word8 8-bit label subtraction

V - S - A
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Enum ELF Reloc Type Type Field / Calculation Description

38 SUB16 Static word16 16-bit label subtraction

V - S - A

39 SUB32 Static word32 32-bit label subtraction

V - S - A

40 SUB64 Static word64 64-bit label subtraction

V - S - A

41 GNU_VTINHERIT Static GNU C++ vtable hierarchy

42 GNU_VTENTRY Static GNU C++ vtable member usage

43 ALIGN Static Alignment statement

44 RVC_BRANCH Static CB-Type 8-bit PC-relative branch offset

S + A - P

45 RVC_JUMP Static CJ-Type 11-bit PC-relative jump offset

S + A - P

46 RVC_LUI Static CI-Type High 6 bits of 18-bit absolute address

S + A

47-50 Reserved - Reserved for future standard use

51 RELAX Static Instruction can be relaxed, paired with a
normal relocation at the same address

52 SUB6 Static word6 Local label subtraction

V - S - A

53 SET6 Static word6 Local label assignment

S + A

54 SET8 Static word8 Local label assignment

S + A

55 SET16 Static word16 Local label assignment

S + A

56 SET32 Static word32 Local label assignment

S + A

57 32_PCREL Static word32 32-bit PC relative

S + A - P

58 IRELATIVE Runtime wordclass Relocation against a local ifunc symbol in
a shared object

ifunc_resolver(B +
A)
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Enum ELF Reloc Type Type Field / Calculation Description

59-191 Reserved - Reserved for future standard use

192-
255

Reserved - Reserved for nonstandard ABI extensions

Table 9. Relocation types

Nonstandard extensions are free to use relocation numbers 192-255 for any purpose. These relocations may
conflict with other nonstandard extensions.

This section and later ones contain fragments written in assembler. The precise assembler syntax, including that
of the relocations, is described in the RISC-V Assembly Programmer’s Manual [rv-asm].

8.5.1. Calculation Symbols
Table 10 provides details on the variables used in relocation calculation:

Variable Description

A Addend field in the relocation entry associated with the symbol

B Base address of a shared object loaded into memory

G Offset of the symbol into the GOT (Global Offset Table)

GOT Address of the GOT (Global Offset Table)

P Position of the relocation

S Value of the symbol in the symbol table

V Value at the position of the relocation

GP Value of __global_pointer$ symbol

TLSMODULE TLS module index for the object containing the symbol

TLSOFFSET TLS static block offset (relative to tp) for the object containing the symbol

Table 10. Variables used in relocation calculation

Global Pointer: It is assumed that program startup code will load the value of the __global_pointer$ symbol
into register gp (aka x3).

8.5.2. Field Symbols
Table 11 provides details on the variables used in relocation fields:

Variable Description

word6 Specifies the 6 least significant bits of a word8 field

word8 Specifies an 8-bit word

word16 Specifies a 16-bit word

word32 Specifies a 32-bit word

word64 Specifies a 64-bit word
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Variable Description

wordclass Specifies a word32 field for ILP32 or a word64 field for LP64

B-Type Specifies a field as the immediate field in a B-type instruction

CB-Type Specifies a field as the immediate field in a CB-type instruction

CI-Type Specifies a field as the immediate field in a CI-type instruction

CJ-Type Specifies a field as the immediate field in a CJ-type instruction

I-Type Specifies a field as the immediate field in an I-type instruction

S-Type Specifies a field as the immediate field in an S-type instruction

U-Type Specifies a field as the immediate field in an U-type instruction

J-Type Specifies a field as the immediate field in a J-type instruction

U+I-Type Specifies a field as the immediate fields in a U-type and I-type instruction pair

Table 11. Variables used in relocation fields

8.5.3. Constants
Table 12 provides details on the constants used in relocation fields:

Name Value

TLS_DTV_OFFSET 0x800

Table 12. Constants used in
relocation fields

8.5.4. Absolute Addresses
32-bit absolute addresses in position dependent code are loaded with a pair of instructions which have an
associated pair of relocations: R_RISCV_HI20 plus R_RISCV_LO12_I or R_RISCV_LO12_S.

The R_RISCV_HI20 refers to an LUI instruction containing the high 20-bits to be relocated to an absolute
symbol address. The LUI instruction is followed by an I-Type instruction (add immediate or load) with an
R_RISCV_LO12_I relocation or an S-Type instruction (store) and an R_RISCV_LO12_S relocation. The addresses
for pair of relocations are calculated like this:

HI20 (symbol_address + 0x800) >> 12

LO12 symbol_address

The following assembly and relocations show loading an absolute address:

    lui  a0, %hi(symbol)     # R_RISCV_HI20 (symbol)
    addi a0, a0, %lo(symbol) # R_RISCV_LO12_I (symbol)
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8.5.5. Global Offset Table
For position independent code in dynamically linked objects, each shared object contains a GOT (Global Offset
Table) which contains addresses of global symbols (objects and functions) referred to by the dynamically linked
shared object. The GOT in each shared library is filled in by the dynamic linker during program loading, or on
the first call to extern functions.

To avoid runtime relocations within the text segment of position independent code the GOT is used for
indirection. Instead of code loading virtual addresses directly, as can be done in static code, addresses are loaded
from the GOT. This allows runtime binding to external objects and functions at the expense of a slightly higher
runtime overhead for access to extern objects and functions.

8.5.6. Program Linkage Table
The PLT (Program Linkage Table) exists to allow function calls between dynamically linked shared objects.
Each dynamic object has its own GOT (Global Offset Table) and PLT (Program Linkage Table).

The first entry of a shared object PLT is a special entry that calls _dl_runtime_resolve to resolve the GOT
offset for the called function. The _dl_runtime_resolve function in the dynamic loader resolves the GOT
offsets lazily on the first call to any function, except when LD_BIND_NOW is set in which case the GOT entries
are populated by the dynamic linker before the executable is started. Lazy resolution of GOT entries is intended
to speed up program loading by deferring symbol resolution to the first time the function is called. The first
entry in the PLT occupies two 16 byte entries:

1:  auipc  t2, %pcrel_hi(.got.plt)
    sub    t1, t1, t3               # shifted .got.plt offset + hdr size + 12
    l[w|d] t3, %pcrel_lo(1b)(t2)    # _dl_runtime_resolve
    addi   t1, t1, -(hdr size + 12) # shifted .got.plt offset
    addi   t0, t2, %pcrel_lo(1b)    # &.got.plt
    srli   t1, t1, log2(16/PTRSIZE) # .got.plt offset
    l[w|d] t0, PTRSIZE(t0)          # link map
    jr     t3

Subsequent function entry stubs in the PLT take up 16 bytes and load a function pointer from the GOT. On the
first call to a function, the entry redirects to the first PLT entry which calls _dl_runtime_resolve and fills in
the GOT entry for subsequent calls to the function:

1:  auipc   t3, %pcrel_hi(function@.got.plt)
    l[w|d]  t3, %pcrel_lo(1b)(t3)
    jalr    t1, t3
    nop

8.5.7. Procedure Calls
R_RISCV_CALL and R_RISCV_CALL_PLT relocations are associated with pairs of instructions (AUIPC+JALR)
generated by the CALL or TAIL pseudoinstructions. Originally, these relocations had slightly different behavior,
but that has turned out to be unnecessary, and they are now interchangeable.

With relaxation enabled, the AUIPC instruction in the AUIPC+JALR pair has both a R_RISCV_CALL or
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R_RISCV_CALL_PLT relocation and an R_RISCV_RELAX relocation indicating the instruction sequence can be
relaxed during linking.

Procedure call linker relaxation allows the AUIPC+JALR pair to be relaxed to the JAL instruction when the
procedure or PLT entry is within (-1MiB to +1MiB-2) of the instruction pair.

The pseudoinstruction:

    call symbol
    call symbol@plt

expands to the following assembly and relocation:

    auipc ra, 0           # R_RISCV_CALL (symbol), R_RISCV_RELAX (symbol)
    jalr  ra, ra, 0

and when symbol has an @plt suffix it expands to:

    auipc ra, 0           # R_RISCV_CALL_PLT (symbol), R_RISCV_RELAX (symbol)
    jalr  ra, ra, 0

8.5.8. PC-Relative Jumps and Branches
Unconditional jump (J-Type) instructions have a R_RISCV_JAL relocation that can represent an even signed 21-
bit offset (-1MiB to +1MiB-2).

Branch (SB-Type) instructions have a R_RISCV_BRANCH relocation that can represent an even signed 13-bit
offset (-4096 to +4094).

8.5.9. PC-Relative Symbol Addresses
32-bit PC-relative relocations for symbol addresses on sequences of instructions such as the AUIPC+ADDI
instruction pair expanded from the la pseudoinstruction, in position independent code typically have an
associated pair of relocations: R_RISCV_PCREL_HI20 plus R_RISCV_PCREL_LO12_I or R_RISCV_PCREL_LO12_S.

The R_RISCV_PCREL_HI20 relocation refers to an AUIPC instruction containing the high 20-bits to be relocated
to a symbol relative to the program counter address of the AUIPC instruction. The AUIPC instruction is followed
by an I-Type instruction (add immediate or load) with an R_RISCV_PCREL_LO12_I relocation or an S-Type
instruction (store) and an R_RISCV_PCREL_LO12_S relocation.

The R_RISCV_PCREL_LO12_I or R_RISCV_PCREL_LO12_S relocations contain a label pointing to an instruction
in the same section with an R_RISCV_PCREL_HI20 relocation entry that points to the target symbol:

• At label: R_RISCV_PCREL_HI20 relocation entry → symbol

• R_RISCV_PCREL_LO12_I relocation entry → label

To get the symbol address to perform the calculation to fill the 12-bit immediate on the add, load or store
instruction the linker finds the R_RISCV_PCREL_HI20 relocation entry associated with the AUIPC instruction.
The addresses for pair of relocations are calculated like this:
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HI20 (symbol_address - hi20_reloc_offset + 0x800) >> 12

LO12 symbol_address - hi20_reloc_offset

The successive instruction has a signed 12-bit immediate so the value of the preceding high 20-bit relocation
may have 1 added to it.

Note the compiler emitted instructions for PC-relative symbol addresses are not necessarily sequential or in pairs.
There is a constraint is that the instruction with the R_RISCV_PCREL_LO12_I or R_RISCV_PCREL_LO12_S
relocation label points to a valid HI20 PC-relative relocation pointing to the symbol.

Here is example assembler showing the relocation types:

label:
    auipc t0, %pcrel_hi(symbol)   # R_RISCV_PCREL_HI20 (symbol)
    lui t1, 1
    lw t2, t0, %pcrel_lo(label)   # R_RISCV_PCREL_LO12_I (label)
    add t2, t2, t1
    sw t2, t0, %pcrel_lo(label)   # R_RISCV_PCREL_LO12_S (label)

8.6. Thread Local Storage
RISC-V adopts the ELF Thread Local Storage Model in which ELF objects define .tbss and .tdata sections
and PT_TLS program headers that contain the TLS "initialization images" for new threads. The .tbss and
.tdata sections are not referenced directly like regular segments, rather they are copied or allocated to the
thread local storage space of newly created threads. See ELF Handling For Thread-Local Storage [tls].

In The ELF Thread Local Storage Model, TLS offsets are used instead of pointers. The ELF TLS sections are
initialization images for the thread local variables of each new thread. A TLS offset defines an offset into the
dynamic thread vector which is pointed to by the TCB (Thread Control Block). RISC-V uses Variant I as
described by the ELF TLS specification, with tp containing the address one past the end of the TCB.

There are various thread local storage models for statically allocated or dynamically allocated thread local
storage. Table 13 lists the thread local storage models:

Mnemonic Model Compiler flags

TLS LE Local Exec -ftls-model=local-exec

TLS IE Initial Exec -ftls-model=initial-exec

TLS LD Local Dynamic -ftls-model=local-dynamic

TLS GD Global Dynamic -ftls-model=global-dynamic

Table 13. TLS models

The program linker in the case of static TLS or the dynamic linker in the case of dynamic TLS allocate TLS
offsets for storage of thread local variables.
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8.6.1. Local Exec
Local exec is a form of static thread local storage. This model is used when static linking as the TLS offsets are
resolved during program linking.

Compiler flag
-ftls-model=local-exec

Variable attribute
__thread int i __attribute__((tls_model("local-exec")));

Example assembler load and store of a thread local variable i using the %tprel_hi, %tprel_add and
%tprel_lo assembler functions. The emitted relocations are in comments.

    lui  a5,%tprel_hi(i)           # R_RISCV_TPREL_HI20 (symbol)
    add  a5,a5,tp,%tprel_add(i)    # R_RISCV_TPREL_ADD (symbol)
    lw   t0,%tprel_lo(i)(a5)       # R_RISCV_TPREL_LO12_I (symbol)
    addi t0,t0,1
    sw   t0,%tprel_lo(i)(a5)       # R_RISCV_TPREL_LO12_S (symbol)

The %tprel_add assembler function does not return a value and is used purely to associate the
R_RISCV_TPREL_ADD relocation with the add instruction.

8.6.2. Initial Exec
Initial exec is is a form of static thread local storage that can be used in shared libraries that use thread local
storage. TLS relocations are performed at load time. dlopen calls to libraries that use thread local storage may
fail when using the initial exec thread local storage model as TLS offsets must all be resolved at load time. This
model uses the GOT to resolve TLS offsets.

Compiler flag
-ftls-model=initial-exec

Variable attribute
__thread int i __attribute__((tls_model("initial-exec")));

ELF flags
DF_STATIC_TLS

Example assembler load and store of a thread local variable i using the la.tls.ie pseudoinstruction, with the
emitted TLS relocations in comments:

    la.tls.ie a5,i
    add  a5,a5,tp
    lw   t0,0(a5)
    addi t0,t0,1
    sw   t0,0(a5)

The assembler pseudoinstruction:
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    la.tls.ie a5,symbol

expands to the following assembly instructions and relocations:

label:
    auipc a5, 0                   # R_RISCV_TLS_GOT_HI20 (symbol)
    {ld,lw} a5, 0(a5)             # R_RISCV_PCREL_LO12_I (label)

8.6.3. Global Dynamic
RISC-V local dynamic and global dynamic TLS models generate equivalent object code. The Global dynamic
thread local storage model is used for PIC Shared libraries and handles the case where more than one library
uses thread local variables, and additionally allows libraries to be loaded and unloaded at runtime using dlopen.
In the global dynamic model, application code calls the dynamic linker function __tls_get_addr to locate TLS
offsets into the dynamic thread vector at runtime.

Compiler flag
-ftls-model=global-dynamic

Variable attribute
__thread int i __attribute__((tls_model("global-dynamic")));

Example assembler load and store of a thread local variable i using the la.tls.gd pseudoinstruction, with the
emitted TLS relocations in comments:

    la.tls.gd a0,i
    call  __tls_get_addr@plt
    mv   a5,a0
    lw   t0,0(a5)
    addi t0,t0,1
    sw   t0,0(a5)

The assembler pseudoinstruction:

    la.tls.gd a0,symbol

expands to the following assembly instructions and relocations:

label:
    auipc a0,0                    # R_RISCV_TLS_GD_HI20 (symbol)
    addi  a0,a0,0                 # R_RISCV_PCREL_LO12_I (label)

In the Global Dynamic model, the runtime library provides the __tls_get_addr function:
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extern void *__tls_get_addr (tls_index *ti);

where the type tls index are defined as:

typedef struct
{
  unsigned long int ti_module;
  unsigned long int ti_offset;
} tls_index;

8.7. Sections
8.7.1. Section Types
The defined processor-specific section types are listed in Table 14.

Name Value Attributes

SHT_RISCV_ATTRIBUTES 0x70000003 none

Table 14. RISC-V-specific section types

8.7.2. Special Sections
Table 15 lists the special sections defined by this ABI.

Name Type Attributes

.riscv.attributes SHT_RISCV_ATTRIBUTES none

Table 15. RISC-V-specific sections

.riscv.attributes names a section that contains RISC-V ELF attributes.

8.8. Program Header Table
The defined processor-specific segment types are listed in Table 16.

Name Value Meaning

PT_RISCV_ATTRIBUTES 0x70000003 RISC-V ELF attribute section.

Table 16. RISC-V-specific segment types

PT_RISCV_ATTRIBUTES describes the location of RISC-V ELF attribute section.

8.9. Note Sections
There are no RISC-V specific definitions relating to ELF note sections.
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8.10. Dynamic Section
The defined processor-specific dynamic array tags are listed in Table 17.

Name Value d_un Executable Shared Object

DT_RISCV_VARIANT_CC 0x70000001 d_val Platform specific Platform specific

Table 17. RISC-V-specific dynamic array tags

An object must have the dynamic tag DT_RISCV_VARIANT_CC if it has one or more R_RISCV_JUMP_SLOT
relocations against symbols with the STO_RISCV_VARIANT_CC attribute.

DT_INIT and DT_FINI are not required to be supported and should be avoided in favour of DT_PREINIT_ARRAY,
DT_INIT_ARRAY and DT_FINI_ARRAY.

8.11. Hash Table
There are no RISC-V specific definitions relating to ELF hash tables.

8.12. Attributes
Attributes are used to record information about an object file/binary that a linker or runtime loader needs to
check compatibility.

Attributes are encoded in a vendor-specific section of type SHT_RISCV_ATTRIBUTES and name
.riscv.attributes. The value of an attribute can hold an integer encoded in the uleb128 format or a null-
terminated byte string (NTBS).

RISC-V attributes have a string value if the tag number is odd and an integer value if the tag number is even.

8.12.1. List of attributes

Tag Value Parameter
type

Description

Tag_RISCV_stack_align 4 uleb128 Indicates the stack alignment requirement
in bytes.

Tag_RISCV_arch 5 NTBS Indicates the target architecture of this
object.

Tag_RISCV_unaligned_access 6 uleb128 Indicates whether to impose unaligned
memory accesses in code generation.

Tag_RISCV_priv_spec 8 uleb128 Indicates the major version of the
privileged specification.

Tag_RISCV_priv_spec_minor 10 uleb128 Indicates the minor version of the
privileged specification.

Tag_RISCV_priv_spec_revision 12 uleb128 Indicates the revision version of the
privileged specification.

Reserved for non-standard
attribute

>= 32768 - -
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Table 18. RISC-V attributes

8.12.2. Detailed attribute description

How does this specification describe public attributes?

Each attribute is described in the following structure: <Tag name>, <Value>, <Parameter type
1>=<Parameter name 1>[, <Parameter type 2>=<Parameter name 2>]

Tag_RISCV_stack_align, 4, uleb128=value

Tag_RISCV_stack_align records the N-byte stack alignment for this object. The default value is 16 for RV32I
or RV64I, and 4 for RV32E.

It will report erros if link object files with different Tag_RISCV_stack_align values.

Tag_RISCV_arch, 5, NTBS=subarch

Tag_RISCV_arch contains a string for the target architecture taken from the option -march. Different
architectures will be integrated into a superset when object files are merged.

Note that the version information for target architecture must be presented explicitly in the attribute and
abbreviations must be expanded. The version information, if not given by -march, must agree with the default
specified by the tool. For example, the architecture RV32I has to be recorded in the attribute as RV32I2P0 in
which 2P0 stands for the default version of its based ISA. On the other hand, the architecture RV32G has to be
presented as RV32I2P0_M2P0_A2P0_F2P0_D2P0 in which the abbreviation G is expanded to the IMAFD
combination with default versions of the standard extensions.

Tag_RISCV_unaligned_access, 6, uleb128=value

Tag_RISCV_unaligned_access denotes the code generation policy for this object file. Its values are defined as
follows:

0 This object does not perform any unaligned memory accesses.

1 This object may perform unaligned memory accesses.

Tag_RISCV_priv_spec, 8, uleb128=version

Tag_RISCV_priv_spec_minor, 10, uleb128=version

Tag_RISCV_priv_spec_revision, 12, uleb128=version

Tag_RISCV_priv_spec contains the major/minor/revision version information of the privileged specification. It
will report errors if object files of different privileged specification versions are merged.
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Chapter 9. Code relaxation
At link time, when all the memory objects have been resolved, the code sequence used to refer to them may be
simplified and optimized by the linker by relaxing some assumptions about the memory layout made at compile
time.

Some relocation types, in certain situations, indicate to the linker where this can happen. Additionally, some
relocation types indicate to the linker the associated parts of a code sequence that can be thusly simplified,
rather than to instruct the linker how to apply a relocation.

The linker should only perform such relaxations when a R_RISCV_RELAX relocation is at the same position as
a candidate relocation.
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Chapter 10. DWARF Debugging Format
The DWARF debugging format for RISC-V follows the standard DWARF specification; this specification only
describes RISC-V-specific definitions.
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Chapter 11. DWARF Register Numbers
The table below lists the mapping from DWARF register numbers to machine registers.

DWARF Number Register Name Description

0 - 31 x0 - x31 Integer Registers

32 - 63 f0 - f31 Floating-point Registers

64 Alternate Frame Return Column

65 - 95 Reserved for future standard extensions

96 - 127 v0 - v31 Vector Registers

128 - 3071 Reserved for future standard extensions

3072 - 4095 Reserved for custom extensions

4096 - 8191 CSRs

Table 19. DWARF register number encodings

The alternate frame return column is meant to be used when unwinding from signal handlers, and stores the
address where the signal handler will return to.

The RISC-V specification defines a total of 4096 CSRs (see [riscv-priv]). Each CSR is assigned a DWARF
register number corresponding to its specified CSR number plus 4096.
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