-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrial.go
342 lines (300 loc) · 9.98 KB
/
trial.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
package goptuna
import (
"context"
"encoding/json"
"errors"
"fmt"
"reflect"
)
//go:generate stringer -trimprefix TrialState -output stringer_trial_state.go -type=TrialState
// TrialState is a state of Trial
type TrialState int
const (
// TrialStateRunning means Trial is running.
TrialStateRunning TrialState = iota
// TrialStateComplete means Trial has been finished without any error.
TrialStateComplete
// TrialStatePruned means Trial has been pruned.
TrialStatePruned
// TrialStateFail means Trial has failed due to an uncaught error.
TrialStateFail
// TrialStateWaiting means Trial has been stopped, but may be resuming.
TrialStateWaiting
)
// IsFinished returns true if trial is not running.
func (i TrialState) IsFinished() bool {
return i != TrialStateRunning && i != TrialStateWaiting
}
// Trial is a process of evaluating an objective function.
//
// This object is passed to an objective function and provides interfaces to get parameter
// suggestion, manage the trial's state of the trial.
// Note that this object is seamlessly instantiated and passed to the objective function behind;
// hence, in typical use cases, library users do not care about instantiation of this object.
type Trial struct {
Study *Study
ID int
state TrialState
value float64
relativeParams map[string]float64
relativeSearchSpace map[string]interface{}
}
func (t *Trial) isFixedParam(name string, distribution interface{}) (float64, bool, error) {
systemAttrs, err := t.GetSystemAttrs()
if err != nil {
return 0, false, err
}
fixedParamsJSON, ok := systemAttrs["fixed_params"]
if !ok {
return 0, false, nil
}
var fixedParams map[string]float64
err = json.Unmarshal([]byte(fixedParamsJSON), &fixedParams)
if err != nil {
return 0, false, err
}
internalParam, ok := fixedParams[name]
if !ok {
return 0, false, nil
}
switch typedDistribution := distribution.(type) {
case UniformDistribution:
if !typedDistribution.Contains(internalParam) {
return 0, false, nil
}
case LogUniformDistribution:
if !typedDistribution.Contains(internalParam) {
return 0, false, nil
}
case DiscreteUniformDistribution:
if !typedDistribution.Contains(internalParam) {
return 0, false, nil
}
case IntUniformDistribution:
if !typedDistribution.Contains(internalParam) {
return 0, false, nil
}
case StepIntUniformDistribution:
if !typedDistribution.Contains(internalParam) {
return 0, false, nil
}
case CategoricalDistribution:
if !typedDistribution.Contains(internalParam) {
return 0, false, nil
}
default:
return 0, false, errors.New("unsupported distribution")
}
return internalParam, true, nil
}
// CallRelativeSampler should be called before evaluate an objective function only 1 time.
// Please note that this method is public for third party libraries like "Kubeflow/Katib".
// Goptuna users SHOULD NOT call this method.
func (t *Trial) CallRelativeSampler() error {
if t.Study.RelativeSampler == nil {
return nil
}
var err error
var searchSpace map[string]interface{}
if t.Study.definedSearchSpace != nil {
searchSpace = t.Study.definedSearchSpace
} else {
searchSpace, err = IntersectionSearchSpace(t.Study)
if err != nil {
return err
}
}
if searchSpace == nil {
return nil
}
relativeSearchSpace := make(map[string]interface{}, len(searchSpace))
for paramName := range searchSpace {
distribution := searchSpace[paramName]
if yes, _ := DistributionIsSingle(distribution); yes {
continue
}
relativeSearchSpace[paramName] = distribution
}
frozen, err := t.Study.Storage.GetTrial(t.ID)
if err != nil {
return err
}
relativeParams, err := t.Study.RelativeSampler.SampleRelative(t.Study, frozen, searchSpace)
if err == ErrUnsupportedSearchSpace {
t.Study.logger.Warn("Your objective function contains unsupported search space for RelativeSampler.",
fmt.Sprintf("trialID=%d", t.ID),
fmt.Sprintf("searchSpace=%#v", searchSpace))
return nil
} else if err != nil {
return err
}
t.relativeSearchSpace = searchSpace
t.relativeParams = relativeParams
return nil
}
func (t *Trial) isRelativeParam(name string, distribution interface{}) bool {
expected, ok := t.relativeSearchSpace[name]
if !ok {
return false
}
return reflect.DeepEqual(expected, distribution)
}
func (t *Trial) suggest(name string, distribution interface{}) (float64, error) {
trial, err := t.Study.Storage.GetTrial(t.ID)
if err != nil {
return 0.0, err
}
if value, ok, err := t.isFixedParam(name, distribution); err != nil {
return 0.0, err
} else if ok {
err = t.Study.Storage.SetTrialParam(t.ID, name, value, distribution)
return value, err
}
if t.isRelativeParam(name, distribution) {
// isRelativeParam ensure that 'distribution' is same
// with the one's in relativeSearchSpace.
value, ok := t.relativeParams[name]
if ok {
err = t.Study.Storage.SetTrialParam(trial.ID, name, value, distribution)
return value, err
}
}
v, err := t.Study.Sampler.Sample(t.Study, trial, name, distribution)
if err != nil {
return 0.0, err
}
err = t.Study.Storage.SetTrialParam(trial.ID, name, v, distribution)
return v, err
}
// ShouldPrune judges whether the trial should be pruned.
// This method calls prune method of the pruner, which judges whether
// the trial should be pruned at the given step.
// If it should be pruned, this method return ErrTrialPruned.
func (t *Trial) ShouldPrune(step int, value float64) error {
if t.Study.Pruner == nil {
t.Study.logger.Warn("Although it's not registered pruner, but you calls ShouldPrune method")
return nil
}
if step < 0 {
return errors.New("step should be larger equal than 0")
}
if err := t.Study.Storage.SetTrialIntermediateValue(t.ID, step, value); err != nil {
return err
}
trial, err := t.Study.Storage.GetTrial(t.ID)
if err != nil {
return err
}
if shouldPrune, err := t.Study.Pruner.Prune(t.Study, trial); err != nil {
return err
} else if shouldPrune {
return ErrTrialPruned
}
return nil
}
// Number return trial's number which is consecutive and unique in a study.
func (t *Trial) Number() (int, error) {
return t.Study.Storage.GetTrialNumberFromID(t.ID)
}
// SuggestUniform suggests a value from a uniform distribution.
// Deprecated: This method will be removed at v1.0.0. Please use SuggestFloat method.
func (t *Trial) SuggestUniform(name string, low, high float64) (float64, error) {
return t.SuggestFloat(name, low, high)
}
// SuggestLogUniform suggests a value from a uniform distribution in the log domain.
// Deprecated: This method will be removed at v1.0.0. Please use SuggestLogFloat method.
func (t *Trial) SuggestLogUniform(name string, low, high float64) (float64, error) {
return t.SuggestLogFloat(name, low, high)
}
// SuggestDiscreteUniform suggests a value from a discrete uniform distribution.
// Deprecated: This method will be removed at v1.0.0. Please use SuggestDiscreteFloat method.
func (t *Trial) SuggestDiscreteUniform(name string, low, high, q float64) (float64, error) {
return t.SuggestDiscreteFloat(name, low, high, q)
}
// SuggestFloat suggests a value for the floating point parameter.
func (t *Trial) SuggestFloat(name string, low, high float64) (float64, error) {
if low > high {
return 0, errors.New("'low' must be smaller than or equal to the 'high'")
}
return t.suggest(name, UniformDistribution{
High: high, Low: low,
})
}
// SuggestLogFloat suggests a value for the log-scale floating point parameter.
func (t *Trial) SuggestLogFloat(name string, low, high float64) (float64, error) {
if low > high {
return 0, errors.New("'low' must be smaller than or equal to the 'high'")
}
return t.suggest(name, LogUniformDistribution{
High: high, Low: low,
})
}
// SuggestDiscreteFloat suggests a value for the discrete floating point parameter.
func (t *Trial) SuggestDiscreteFloat(name string, low, high, q float64) (float64, error) {
if low > high {
return 0, errors.New("'low' must be smaller than or equal to the 'high'")
}
d := DiscreteUniformDistribution{
High: high, Low: low, Q: q,
}
ir, err := t.suggest(name, d)
if err != nil {
return 0, err
}
return d.ToExternalRepr(ir).(float64), err
}
// SuggestInt suggests an integer parameter.
func (t *Trial) SuggestInt(name string, low, high int) (int, error) {
if low > high {
return 0, errors.New("'low' must be smaller than or equal to the 'high'")
}
d := IntUniformDistribution{
High: high, Low: low,
}
v, err := t.suggest(name, d)
return d.ToExternalRepr(v).(int), err
}
// SuggestStepInt suggests a step-interval integer parameter.
func (t *Trial) SuggestStepInt(name string, low, high, step int) (int, error) {
if low > high {
return 0, errors.New("'low' must be smaller than or equal to the 'high'")
}
if step <= 0 {
return 0, errors.New("'step' must be larger than 0")
}
d := StepIntUniformDistribution{
High: high, Low: low, Step: step,
}
v, err := t.suggest(name, d)
return d.ToExternalRepr(v).(int), err
}
// SuggestCategorical suggests an categorical parameter.
func (t *Trial) SuggestCategorical(name string, choices []string) (string, error) {
if len(choices) == 0 {
return "", errors.New("'choices' must contains one or more elements")
}
v, err := t.suggest(name, CategoricalDistribution{
Choices: choices,
})
return choices[int(v)], err
}
// SetUserAttr to store the value for the user.
func (t *Trial) SetUserAttr(key, value string) error {
return t.Study.Storage.SetTrialUserAttr(t.ID, key, value)
}
// SetSystemAttr to store the value for the system.
func (t *Trial) SetSystemAttr(key, value string) error {
return t.Study.Storage.SetTrialSystemAttr(t.ID, key, value)
}
// GetUserAttrs to store the value for the user.
func (t *Trial) GetUserAttrs() (map[string]string, error) {
return t.Study.Storage.GetTrialUserAttrs(t.ID)
}
// GetSystemAttrs to store the value for the system.
func (t *Trial) GetSystemAttrs() (map[string]string, error) {
return t.Study.Storage.GetTrialSystemAttrs(t.ID)
}
// GetContext returns a context which is registered at 'study.WithContext()'.
func (t *Trial) GetContext() context.Context {
return t.Study.ctx
}