-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPresGAN.py
64 lines (55 loc) · 3.2 KB
/
PresGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from models.GAN.PrescribedGAN import *
from data.Dataloaders import *
from utils.util import parse_args_PresGAN
import torch
import wandb
if __name__ == '__main__':
args = parse_args_PresGAN()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
size = None
if args.train:
train_dataloader, input_size, channels = pick_dataset(dataset_name = args.dataset, batch_size=args.batch_size, normalize = True, size=size, num_workers=args.num_workers)
if not args.no_wandb:
wandb.init(project="PresGAN",
config = {
"dataset": args.dataset,
"batch_size": args.batch_size,
"nz": args.nz,
"ngf": args.ngf,
"ndf": args.ndf,
"lrD": args.lrD,
"lrG": args.lrG,
"beta1": args.beta1,
"n_epochs": args.n_epochs,
"sigma_lr": args.sigma_lr,
"num_gen_images": args.num_gen_images,
"restrict_sigma": args.restrict_sigma,
"sigma_min": args.sigma_min,
"sigma_max": args.sigma_max,
"stepsize_num": args.stepsize_num,
"lambda_": args.lambda_,
"burn_in": args.burn_in,
"num_samples_posterior": args.num_samples_posterior,
"leapfrog_steps": args.leapfrog_steps,
"hmc_learning_rate": args.hmc_learning_rate,
"hmc_opt_accept": args.hmc_opt_accept,
"flag_adapt": args.flag_adapt
},
name=f"PresGAN_{args.dataset}"
)
model = PresGAN(imgSize=input_size, channels=channels, args=args)
model.train_model(train_dataloader)
wandb.finish()
elif args.sample:
_, input_size, channels = pick_dataset(dataset_name = args.dataset, batch_size=args.batch_size, normalize = True, size = size)
model = PresGAN(imgSize=input_size, channels=channels, args=args)
model.load_checkpoints(generator_checkpoint=args.checkpoint, discriminator_checkpoint=args.discriminator_checkpoint, sigma_checkpoint=args.sigma_checkpoint)
model.sample(num_samples=args.num_gen_images)
elif args.outlier_detection:
in_loader, input_size, channels = pick_dataset(dataset_name = args.dataset, batch_size=args.batch_size, normalize = True, size = size, mode="val")
out_loader, _, _ = pick_dataset(dataset_name = args.out_dataset, batch_size=args.batch_size, normalize = True, size = input_size, mode="val")
model = PresGAN(imgSize=input_size, channels=channels, args=args)
model.load_checkpoints(generator_checkpoint=args.checkpoint, discriminator_checkpoint=args.discriminator_checkpoint, sigma_checkpoint=args.sigma_checkpoint)
model.outlier_detection(in_loader, out_loader)
else:
raise Exception("Invalid mode. Set the --train or --sample flag")