-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVQGAN_Transformer.py
292 lines (250 loc) · 13.1 KB
/
VQGAN_Transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
####################################################################################################################################################################
### Code adapted from: https://github.com/Project-MONAI/GenerativeModels/blob/main/tutorials/generative/2d_VQGAN_Transformer/2d_VQGAN_Transformer_tutorial.ipynb ###
####################################################################################################################################################################
import torch
import torch.nn as nn
from generative.inferers import VQVAETransformerInferer
from generative.losses import PatchAdversarialLoss, PerceptualLoss
from generative.networks.nets import VQVAE, PatchDiscriminator, DecoderOnlyTransformer
from generative.utils.ordering import Ordering
from generative.utils.enums import OrderingType
from tqdm import tqdm, trange
from matplotlib import pyplot as plt
from torchvision.utils import make_grid
import numpy as np
import os
from config import models_dir
import wandb
from sklearn.metrics import roc_auc_score, roc_curve
def create_checkpoint_dir():
if not os.path.exists(models_dir):
os.makedirs(models_dir)
if not os.path.exists(os.path.join(models_dir, 'VQGAN_Transformer')):
os.makedirs(os.path.join(models_dir, 'VQGAN_Transformer'))
class VQGANTransformer(nn.Module):
def __init__(self, args, channels=3, img_size=32):
'''
VQGANTransformer model that combines VQVAE and Transformer models
:param args: arguments for training the model
:param channels: number of channels in the input image
:param img_size: size of the input image
'''
super(VQGANTransformer, self).__init__()
self.vqvae = VQVAE(spatial_dims=2,
in_channels=channels,
out_channels=channels,
num_res_layers=args.num_res_layers,
downsample_parameters=args.downsample_parameters,
upsample_parameters=args.upsample_parameters,
num_channels=args.num_channels,
num_res_channels=args.num_res_channels,
num_embeddings=args.num_embeddings,
embedding_dim=args.embedding_dim)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.discriminator = PatchDiscriminator(spatial_dims=2, in_channels=channels, num_layers_d=args.num_layers_d, num_channels=args.num_channels_d)
self.discriminator.to(self.device)
self.perceptual_loss = PerceptualLoss(spatial_dims=2, network_type="alex")
self.perceptual_loss.to(self.device)
self.adv_weight = args.adv_weight
self.perceptual_weight = args.perceptual_weight
test_input = torch.randn(1, channels, img_size, img_size)
self.spatial_shape = self.vqvae.encode_stage_2_inputs(test_input).shape[2:]
self.ordering = Ordering(ordering_type=OrderingType.RASTER_SCAN.value, spatial_dims=2, dimensions=(1,) + self.spatial_shape) # order the encoded features in raster scan order
self.bos = args.num_embeddings # Begin of Sentence (BOS) token
self.transformer = DecoderOnlyTransformer(num_tokens=args.num_embeddings + 1, # 256 from num_embeddings input of VQVAE + 1 for Begin of Sentence (BOS) token
max_seq_len=self.spatial_shape[0] * self.spatial_shape[1],
attn_layers_dim=args.attn_layers_dim,
attn_layers_depth=args.attn_layers_depth,
attn_layers_heads=args.attn_layers_heads,
)
self.vqvae.to(self.device)
self.transformer.to(self.device)
self.inferer = VQVAETransformerInferer()
self.channels = channels
self.img_size = img_size
self.no_wandb = args.no_wandb
def train_VQGAN(self, args, train_loader, verbose=True):
'''
Train the VQGAN model
:param args: arguments for training the model
:param train_loader: training data loader
'''
optimizer = torch.optim.Adam(params=self.vqvae.parameters(), lr=args.lr)
optimizer_d = torch.optim.Adam(params=self.discriminator.parameters(), lr=args.lr_d)
l1_loss = nn.L1Loss()
adv_loss = PatchAdversarialLoss(criterion="least_squares")
best_loss = np.inf
epoch_bar = trange(args.n_epochs, desc='Epochs')
for epoch in epoch_bar:
self.vqvae.train()
acc_loss = 0
acc_loss_d = 0
for x,_ in tqdm(train_loader, desc='Batches', leave=False, disable=not verbose):
x = x.to(self.device)
### Train the VQVAE ###
optimizer.zero_grad()
x_recon, quant_l, = self.vqvae(x)
logits_fake = self.discriminator(x_recon.contiguous().float())[-1]
recon_loss = l1_loss(x_recon.float(), x.float())
p_loss = self.perceptual_loss(x_recon.float(), x.float())
gen_loss = adv_loss(logits_fake, target_is_real=True, for_discriminator=False)
vqvae_loss = recon_loss + quant_l + self.perceptual_weight * p_loss + self.adv_weight * gen_loss
vqvae_loss.backward()
optimizer.step()
### Train the Discriminator ###
optimizer_d.zero_grad()
logits_fake = self.discriminator(x_recon.contiguous().detach())[-1]
loss_d_fake = adv_loss(logits_fake, target_is_real=False, for_discriminator=True)
logits_real = self.discriminator(x.contiguous().float())[-1]
loss_d_real = adv_loss(logits_real, target_is_real=True, for_discriminator=True)
d_loss = self.adv_weight*(loss_d_fake + loss_d_real) / 2
d_loss.backward()
optimizer_d.step()
acc_loss += vqvae_loss.item()*x.shape[0]
acc_loss_d += d_loss.item()*x.shape[0]
acc_loss /= len(train_loader.dataset)
acc_loss_d /= len(train_loader.dataset)
if not self.no_wandb:
wandb.log({'loss_vqvae': acc_loss, 'loss_discriminator': acc_loss_d})
if acc_loss < best_loss:
best_loss = acc_loss
torch.save(self.vqvae.state_dict(), os.path.join(models_dir, 'VQGAN_Transformer', f'VQGAN_{args.dataset}.pt'))
if (epoch+1) % args.sample_and_save_freq == 0 or epoch == 0:
self.reconstruct(x[:8])
def train_Transformer(self, args, train_loader, verbose=True):
'''
Train the Transformer model
:param args: arguments for training the model
:param train_loader: training data loader
'''
optimizer = torch.optim.Adam(params=self.transformer.parameters(), lr=args.lr_t)
ce_loss = nn.CrossEntropyLoss()
epoch_bar = trange(args.n_epochs_t, desc='Epochs')
best_loss = np.inf
for epoch in epoch_bar:
self.transformer.train()
acc_loss = 0
for x,_ in tqdm(train_loader, desc='Batches', leave=False, disable=not verbose):
x = x.to(self.device)
optimizer.zero_grad()
logits, targets, _ = self.inferer(x, self.vqvae, self.transformer, self.ordering, return_latent=True)
logits = logits.transpose(1, 2)
loss = ce_loss(logits, targets)
loss.backward()
optimizer.step()
acc_loss += loss.item()*x.shape[0]
acc_loss /= len(train_loader.dataset)
if not self.no_wandb:
wandb.log({'loss_transformer': acc_loss})
epoch_bar.set_postfix(loss=acc_loss)
if acc_loss < best_loss:
best_loss = acc_loss
torch.save(self.transformer.state_dict(), os.path.join(models_dir, 'VQGAN_Transformer', f'Transformer_{args.dataset}.pt'))
if (epoch+1) % args.sample_and_save_freq == 0 or epoch == 0:
self.sample(16)
def train_model(self, args, train_loader_a, train_loader_b, verbose=True):
'''
Train the VQGAN-Transformer model
:param args: arguments for training the model
:param train_loader_a: training data loader for VQVAE
:param train_loader_b: training data loader for Transformer
'''
create_checkpoint_dir()
print('Training VQGAN...')
self.train_VQGAN(args, train_loader_a, verbose)
# load the best VQVAE model
self.vqvae.load_state_dict(torch.load(os.path.join(models_dir, 'VQGAN_Transformer', f'VQGAN_{args.dataset}.pt')))
# remove discriminator and perceptual loss from memory
del self.discriminator
del self.perceptual_loss
print('Training Transformer...')
self.train_Transformer(args, train_loader_b, verbose)
@torch.no_grad()
def reconstruct(self, x, train=True):
'''
Reconstruct the input image using the VQVAE model
:param x: input image
:param train: whether to log the image to wandb
'''
self.vqvae.eval()
x = x.to(self.device)
x_recon, _ = self.vqvae(x)
# clip the values to [0, 1]
x_recon = torch.clamp(x_recon, 0, 1)
# make a grid of images with original in top row and reconstructed in bottom row
grid = make_grid(torch.cat((x, x_recon), dim=0), nrow=x.shape[0])
# plot the grid
fig = plt.figure(figsize=(16, 4))
plt.imshow(grid.permute(1, 2, 0).cpu().numpy())
plt.axis('off')
if train:
if not self.no_wandb:
wandb.log({'reconstruction': fig})
else:
plt.show()
plt.close(fig)
@torch.no_grad()
def sample(self, num_samples, train=True):
'''
Generate samples using the VQGAN-Transformer model
:param num_samples: number of samples to generate
:param train: whether to log the samples to wandb
'''
self.vqvae.eval()
self.transformer.eval()
images = []
for _ in tqdm(range(num_samples)):
sample = self.inferer.sample(transformer_model=self.transformer, vqvae_model=self.vqvae, ordering=self.ordering, latent_spatial_dim=(self.spatial_shape[0], self.spatial_shape[1]), starting_tokens=self.bos * torch.ones((1, 1), device=self.device), verbose=False)
images.append(sample)
images = torch.cat(images, dim=0)
images = torch.clamp(images, 0, 1)
fig = plt.figure(figsize=(10, 10))
grid = make_grid(images, nrow=int(num_samples**0.5))
plt.imshow(grid.permute(1, 2, 0).cpu().numpy())
plt.axis('off')
if train:
if not self.no_wandb:
wandb.log({'samples': fig})
else:
plt.show()
@torch.no_grad()
def outlier_detection(self, in_loader, out_loader, display=True, in_array=None):
'''
Perform outlier detection using the VQGAN-Transformer model
:param in_loader: input data loader
:param out_loader: out-of-distribution data loader
:param display: whether to display the results
:param in_array: input array
'''
self.vqvae.eval()
self.transformer.eval()
if in_array is None:
in_scores = []
for x, _ in tqdm(in_loader, desc='In-distribution', leave=False):
nll = self.inferer.get_likelihood(x.to(self.device), self.vqvae, self.transformer, self.ordering)
in_scores.append(-nll.sum(dim=(1, 2)).cpu().numpy())
in_array = np.concatenate(in_scores)
out_scores = []
for x, _ in tqdm(out_loader, desc='Out-of-distribution', leave=False):
nll = self.inferer.get_likelihood(x.to(self.device), self.vqvae, self.transformer, self.ordering)
out_scores.append(-nll.sum(dim=(1, 2)).cpu().numpy())
out_array = np.concatenate(out_scores)
auc = roc_auc_score([0]*len(in_array) + [1]*len(out_array), np.concatenate([in_array, out_array]))
fpr, tpr, _ = roc_curve([0]*len(in_array) + [1]*len(out_array), np.concatenate([in_array, out_array]))
fpr95 = fpr[np.argmax(tpr >= 0.95)]
print(f'AUC: {auc:.4f}, FPR95: {fpr95:.4f}')
if display:
plt.hist(in_array, bins=50, alpha=0.5, label='In-distribution')
plt.hist(out_array, bins=50, alpha=0.5, label='Out-of-distribution')
plt.legend()
plt.show()
def load_checkpoint(self, checkpoint_vqvae=None, checkpoint_transformer=None):
'''
Load the checkpoints for the VQVAE and Transformer models
:param checkpoint_vqvae: checkpoint for VQVAE model
:param checkpoint_transformer: checkpoint for Transformer model
'''
if checkpoint_vqvae is not None:
self.vqvae.load_state_dict(torch.load(checkpoint_vqvae))
if checkpoint_transformer is not None:
self.transformer.load_state_dict(torch.load(checkpoint_transformer))