-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVQVAE_Transformer.py
222 lines (190 loc) · 9.37 KB
/
VQVAE_Transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
####################################################################################################################################################################
### Code adapted from: https://github.com/Project-MONAI/GenerativeModels/blob/main/tutorials/generative/2d_vqvae_transformer/2d_vqvae_transformer_tutorial.ipynb ###
####################################################################################################################################################################
import torch
import torch.nn as nn
from generative.inferers import VQVAETransformerInferer
from generative.networks.nets import VQVAE, DecoderOnlyTransformer
from generative.utils.ordering import Ordering
from generative.utils.enums import OrderingType
from tqdm import tqdm, trange
from matplotlib import pyplot as plt
from torchvision.utils import make_grid
import numpy as np
import os
from config import models_dir
import wandb
def create_checkpoint_dir():
if not os.path.exists(models_dir):
os.makedirs(models_dir)
if not os.path.exists(os.path.join(models_dir, 'VQVAE_Transformer')):
os.makedirs(os.path.join(models_dir, 'VQVAE_Transformer'))
class VQVAETransformer(nn.Module):
def __init__(self, args, channels=3, img_size=32):
'''
VQVAETransformer model
:param args: arguments
:param channels: number of channels in the input image
:param img_size: size of the input image
'''
super(VQVAETransformer, self).__init__()
self.vqvae = VQVAE(spatial_dims=2,
in_channels=channels,
out_channels=channels,
num_res_layers=args.num_res_layers,
downsample_parameters=args.downsample_parameters,
upsample_parameters=args.upsample_parameters,
num_channels=args.num_channels,
num_res_channels=args.num_res_channels,
num_embeddings=args.num_embeddings,
embedding_dim=args.embedding_dim)
test_input = torch.randn(1, channels, img_size, img_size)
self.spatial_shape = self.vqvae.encode_stage_2_inputs(test_input).shape[2:]
self.ordering = Ordering(ordering_type=OrderingType.RASTER_SCAN.value, spatial_dims=2, dimensions=(1,) + self.spatial_shape) # order the encoded features in raster scan order
self.bos = args.num_embeddings # Begin of Sentence (BOS) token
self.transformer = DecoderOnlyTransformer(num_tokens=args.num_embeddings + 1, # 256 from num_embeddings input of VQVAE + 1 for Begin of Sentence (BOS) token
max_seq_len=self.spatial_shape[0] * self.spatial_shape[1],
attn_layers_dim=args.attn_layers_dim,
attn_layers_depth=args.attn_layers_depth,
attn_layers_heads=args.attn_layers_heads,
)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.vqvae.to(self.device)
self.transformer.to(self.device)
self.inferer = VQVAETransformerInferer()
self.channels = channels
self.img_size = img_size
self.no_wandb = args.no_wandb
def train_VQVAE(self, args, train_loader, verbose=True):
'''
Train the VQVAE model
:param args: arguments
:param train_loader: training data loader
'''
optimizer = torch.optim.Adam(params=self.vqvae.parameters(), lr=args.lr)
l1_loss = nn.L1Loss()
best_loss = np.inf
epoch_bar = trange(args.n_epochs, desc='Epochs')
for epoch in epoch_bar:
self.vqvae.train()
acc_loss = 0
for x,_ in tqdm(train_loader, desc='Batches', leave=False, disable=not verbose):
x = x.to(self.device)
optimizer.zero_grad()
x_recon, quant_l, = self.vqvae(x)
recon_loss = l1_loss(x_recon.float(), x.float())
loss = recon_loss + quant_l
loss.backward()
optimizer.step()
acc_loss += loss.item()*x.shape[0]
acc_loss /= len(train_loader.dataset)
if not self.no_wandb:
wandb.log({'loss_vqvae': acc_loss})
epoch_bar.set_postfix(loss=acc_loss)
if acc_loss < best_loss:
best_loss = acc_loss
torch.save(self.vqvae.state_dict(), os.path.join(models_dir, 'VQVAE_Transformer', f'VQVAE_{args.dataset}.pt'))
if (epoch+1) % args.sample_and_save_freq == 0 or epoch == 0:
self.reconstruct(x[:8])
def train_Transformer(self, args, train_loader, verbose=True):
'''
Train the Transformer model
:param args: arguments
:param train_loader: training data loader
'''
optimizer = torch.optim.Adam(params=self.transformer.parameters(), lr=args.lr_t)
ce_loss = nn.CrossEntropyLoss()
epoch_bar = trange(args.n_epochs_t, desc='Epochs')
best_loss = np.inf
for epoch in epoch_bar:
self.transformer.train()
acc_loss = 0
for x,_ in tqdm(train_loader, desc='Batches', leave=False, disable=not verbose):
x = x.to(self.device)
optimizer.zero_grad()
logits, targets, _ = self.inferer(x, self.vqvae, self.transformer, self.ordering, return_latent=True)
logits = logits.transpose(1, 2)
loss = ce_loss(logits, targets)
loss.backward()
optimizer.step()
acc_loss += loss.item()*x.shape[0]
acc_loss /= len(train_loader.dataset)
if not self.no_wandb:
wandb.log({'loss_transformer': acc_loss})
epoch_bar.set_postfix(loss=acc_loss)
if acc_loss < best_loss:
best_loss = acc_loss
torch.save(self.transformer.state_dict(), os.path.join(models_dir, 'VQVAE_Transformer', f'Transformer_{args.dataset}.pt'))
if (epoch+1) % args.sample_and_save_freq == 0 or epoch == 0:
self.sample(16)
def train_model(self, args, train_loader_a, train_loader_b, verbose=True):
'''
Train the VQVAE and Transformer models
:param args: arguments
:param train_loader_a: training data loader for VQVAE
:param train_loader_b: training data loader for Transformer
'''
create_checkpoint_dir()
print('Training VQVAE...')
self.train_VQVAE(args, train_loader_a, verbose)
# load the best VQVAE model
self.vqvae.load_state_dict(torch.load(os.path.join(models_dir, 'VQVAE_Transformer', f'VQVAE_{args.dataset}.pt')))
print('Training Transformer...')
self.train_Transformer(args, train_loader_b, verbose)
@torch.no_grad()
def reconstruct(self, x, train=True):
'''
Reconstruct the input image
:param x: input image
:param train: whether to log the image to wandb
'''
self.vqvae.eval()
x = x.to(self.device)
x_recon, _ = self.vqvae(x)
# clip the values to [0, 1]
x_recon = torch.clamp(x_recon, 0, 1)
# make a grid of images with original in top row and reconstructed in bottom row
grid = make_grid(torch.cat((x, x_recon), dim=0), nrow=x.shape[0])
# plot the grid
fig = plt.figure(figsize=(16, 4))
plt.imshow(grid.permute(1, 2, 0).cpu().numpy())
plt.axis('off')
if train:
if not self.no_wandb:
wandb.log({'reconstruction': fig})
else:
plt.show()
plt.close(fig)
@torch.no_grad()
def sample(self, num_samples, train=True):
'''
Generate samples from the model
:param num_samples: number of samples to generate
:param train: whether to log the samples to wandb
'''
self.vqvae.eval()
self.transformer.eval()
images = []
for _ in tqdm(range(num_samples)):
sample = self.inferer.sample(transformer_model=self.transformer, vqvae_model=self.vqvae, ordering=self.ordering, latent_spatial_dim=(self.spatial_shape[0], self.spatial_shape[1]), starting_tokens=self.bos * torch.ones((1, 1), device=self.device), verbose=False)
images.append(sample)
images = torch.cat(images, dim=0)
fig = plt.figure(figsize=(10, 10))
grid = make_grid(images, nrow=int(num_samples**0.5))
plt.imshow(grid.permute(1, 2, 0).cpu().numpy())
plt.axis('off')
if train:
if not self.no_wandb:
wandb.log({'samples': fig})
else:
plt.show()
def load_checkpoint(self, checkpoint_vqvae=None, checkpoint_transformer=None):
'''
Load the model checkpoints
:param checkpoint_vqvae: checkpoint for VQVAE model
:param checkpoint_transformer: checkpoint for Transformer model
'''
if checkpoint_vqvae is not None:
self.vqvae.load_state_dict(torch.load(checkpoint_vqvae))
if checkpoint_transformer is not None:
self.transformer.load_state_dict(torch.load(checkpoint_transformer))