-
Notifications
You must be signed in to change notification settings - Fork 1
/
index.Rmd
542 lines (438 loc) · 24.2 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
---
title: "OMOP2OBO Dashboard"
output:
flexdashboard::flex_dashboard:
storyboard: true
source_code: embed
orientation: rows
vertical_layout: scroll
social: menu
theme: flatly
---
```{r download mapping data, include=FALSE}
# set download_data to TRUE to downloaded or update mapping data
download_data = FALSE
if (download_data) {
source("download_data.R")
}
```
```{r setup, include=FALSE}
library(crosstalk)
library(dplyr)
library(DT)
library(flexdashboard)
library(plotly)
library(reshape)
library(tidyverse)
#------------------ READ MAPPING DATA ------------------
# load data
cond_data <- arrow::read_parquet(file.path("data", "cond_data.parquet"))
drug_data <- arrow::read_parquet(file.path("data", "drug_data.parquet"))
lab_data <- arrow::read_parquet(file.path("data", "lab_data.parquet"))
# get value board counts
cond_count <- n_distinct(subset(cond_data, !(ONTOLOGY_URI %in% c('NOT YET MAPPED')))$CONCEPT_ID)
drug_count <- n_distinct(subset(drug_data, !(ONTOLOGY_URI %in% c('NOT YET MAPPED')))$CONCEPT_ID)
lab_count <- n_distinct(subset(lab_data, !(ONTOLOGY_URI %in% c('NOT YET MAPPED')))$CONCEPT_ID)
#------------------ Parameters ------------------
# set value board colors
# https://www.w3.org/TR/css-color-3/#svg-color
cond_color <- "firebrick"
drug_color <- "mediumpurple"
lab_color <- "forestgreen"
# timestamp for tables
run_time <- format(Sys.time(), "%a %b %d %X %Y")
# function for data table embedded bar charts
bar_chart <- function(label, width = "100%", height = "14px", fill = "#00bfc4", background = NULL) {
bar <- htmltools::div(style = list(background = fill, width = width, height = height))
chart <- htmltools::div(style = list(flexGrow = 1, marginLeft = "6px", background = background), bar)
htmltools::div(style = list(display = "flex", alignItems = "center"), label, chart)
}
# variables to use when plotting
aca = "Automatic One-to-Many Ancestor"
acc = "Automatic One-to-Many Concept"
aea = "Automatic One-to-One Ancestor"
aec = "Automatic One-to-One Concept"
m = "Manual One-to-One Concept"
mc = "Manual One-to-Many Concept"
cs = "Cosine Similarity One-to-One Concept"
un = "Unmapped"
```
<!-- ============================ SUMMARY PAGE ============================ -->
Mapping Summary {data-icon="fa-map"}
=====================================
Column
-----------------------------------------------------------------------
### conditions {.value-box}
```{r}
valueBox(value = paste(format(cond_count, big.mark = ","), "", sep = " "),
caption = "Conditions",
icon = "fas fa-heartbeat",
color = cond_color)
```
### conditions {.value-box .mobile}
```{r}
valueBox(value = paste(format(cond_count, big.mark = ","), "", sep = " "),
caption = "Conditions",
icon = "fas fa-heartbeat",
color = cond_color)
```
### drugs {.value-box}
```{r}
valueBox(value = paste(format(drug_count, big.mark = ","), "", sep = " "),
caption = "Drug Ingredients",
icon = "fas fa-pills",
color = drug_color)
```
### drugs {.value-box .mobile}
```{r}
valueBox(value = paste(format(drug_count, big.mark = ","), "", sep = " "),
caption = "Drug Ingredients",
icon = "fas fa-pills",
color = drug_color)
```
### measurements {.value-box}
```{r}
valueBox(value = paste(format(lab_count, big.mark = ","), "", sep = " "),
caption = "Measurements",
icon = "fas fa-vial",
color = lab_color)
```
### measurements {.value-box .mobile}
```{r}
valueBox(value = paste(format(lab_count, big.mark = ","), "", sep = " "),
caption = "Measurements",
icon = "fas fa-vial",
color = lab_color)
```
Row {.tabset .tabset-fade}
-----------------------------------------------------------------------
### Condition Mappings
```{r}
# get concept mapping counts by ontology and mapping category
c_test = cond_data[,c(1, 2, 8)]
c_test$ONTOLOGY <- as.factor(c_test$ONTOLOGY)
c_out <- c_test %>%
group_by(c_test$ONTOLOGY, c_test$MAPPING_CATEGORY) %>%
tally(sort = T) %>%
ungroup()
# rename columns and reshape data so counts organize din rows by ontology
names(c_out)[names(c_out) == "c_test$ONTOLOGY"] <- "ONTOLOGY"
names(c_out)[names(c_out) == "c_test$MAPPING_CATEGORY"] <- "MAPPING_CATEGORY"
names(c_out)[names(c_out) == "n"] <- "COUNT"
c_out_plot <- cast(c_out, ONTOLOGY ~ MAPPING_CATEGORY)
# rename casted df and convert n/a values to 0
names(c_out_plot)<-str_replace_all(names(c_out_plot), c(" " = "." , "-" = "." ))
c_out_plot[is.na(c_out_plot)] <- 0
# create plot data
onts <- c_out_plot$ONTOLOGY
aca_df <- c_out_plot$Automatic.One.to.Many.Ancestor
acc_df <- c_out_plot$Automatic.One.to.Many.Concept
aea_df <- c_out_plot$Automatic.One.to.One.Ancestor
aec_df <- c_out_plot$Automatic.One.to.One.Concept
m_df <- c_out_plot$Manual.One.to.One.Concept
mc_df <- c_out_plot$Manual.One.to.Many.Concept
cs_df <- c_out_plot$Cosine.Similarity.One.to.One.Concept
data1 <- data.frame(onts, aca_df, acc_df, aea_df, aec_df, m_df, mc_df, cs_df)
# create plot
fig <- plot_ly(data1, x = ~onts, y = ~aca_df, type = 'bar', name = aca)
fig <- fig %>% add_trace(y = ~acc_df, name = acc)
fig <- fig %>% add_trace(y = ~aea_df, name = aea)
fig <- fig %>% add_trace(y = ~aec_df, name = aec)
fig <- fig %>% add_trace(y = ~m_df, name = m)
fig <- fig %>% add_trace(y = ~mc_df, name = mc)
fig <- fig %>% add_trace(y = ~cs_df, name = cs)
fig <- fig %>% layout(yaxis = list(title = 'Concept Count'),
xaxis = list(title = 'Ontology'),
title = "Mapped Conditions Count by Mapping Category and Ontology",
barmode = 'group')
fig
```
### Condition Mapping Summary
```{r table1}
# get concept mapping counts by ontology and mapping category
c_out_table <- cast(c_out, MAPPING_CATEGORY ~ ONTOLOGY)
# create table
# declare factors and make table
c_out_table$MAPPING_CATEGORY <- as.factor(c_out_table$MAPPING_CATEGORY)
c_out_table[is.na(c_out_table)] <- 0
table <- datatable(c_out_table)
# add table footer
htmltools::div(
class = "condition-mapping-data",
htmltools::div(class = "condition-mapping-data-footer",
htmltools::div( class = "condition-mapping-data-title",
"Source: OMOP2OBO v1.0 - OMOP v5.3"),
table)
)
```
Row {.tabset .tabset-fade}
-----------------------------------------------------------------------
### Drug Ingredient Mappings
```{r}
# get concept mapping counts by ontology and mapping category
d_test = drug_data[,c(1, 2, 8)]
d_test$ONTOLOGY <- as.factor(d_test$ONTOLOGY)
d_out <- d_test %>%
group_by(d_test$ONTOLOGY, d_test$MAPPING_CATEGORY) %>%
tally(sort = T) %>%
ungroup()
# rename columns and reshape data so counts organize din rows by ontology
names(d_out)[names(d_out) == "d_test$ONTOLOGY"] <- "ONTOLOGY"
names(d_out)[names(d_out) == "d_test$MAPPING_CATEGORY"] <- "MAPPING_CATEGORY"
names(d_out)[names(d_out) == "n"] <- "COUNT"
d_out_plot <- cast(d_out, ONTOLOGY ~ MAPPING_CATEGORY)
# rename casted df and convert n/a values to 0
names(d_out_plot)<-str_replace_all(names(d_out_plot), c(" " = "." , "-" = "." ))
d_out_plot[is.na(d_out_plot)] <- 0
# create plot data
onts <- d_out_plot$ONTOLOGY
aca_df <- d_out_plot$Automatic.One.to.Many.Ancestor
acc_df <- d_out_plot$Automatic.One.to.Many.Concept
aea_df <- d_out_plot$Automatic.One.to.One.Ancestor
aec_df <- d_out_plot$Automatic.One.to.One.Concept
m_df <- d_out_plot$Manual.One.to.One.Concept
mc_df <- d_out_plot$Manual.One.to.Many.Concept
cs_df <- d_out_plot$Cosine.Similarity.One.to.One.Concept
data2 <- data.frame(onts, aca_df, acc_df, aea_df, aec_df, m_df, mc_df, cs_df)
# create plot
fig <- plot_ly(data2, x = ~onts, y = ~aca_df, type = 'bar', name = aca) %>%
add_trace(y = ~acc_df, name = acc) %>%
add_trace(y = ~aea_df, name = aea) %>%
add_trace(y = ~aec_df, name = aec) %>%
add_trace(y = ~m_df, name = m) %>%
add_trace(y = ~mc_df, name = mc) %>%
add_trace(y = ~cs_df, name = cs) %>%
layout(yaxis = list(title = 'Concept Count'),
xaxis = list(title = 'Ontology'),
title = "Mapped Drug Ingredients Count by Mapping Category and Ontology",
barmode = 'group')
fig
```
### Drug Ingredient Mapping Summary
```{r table2}
# get concept mapping counts by ontology and mapping category
d_out_table <- cast(d_out, MAPPING_CATEGORY ~ ONTOLOGY)
# create table
# declare factors, reorder columns, and make table
d_out_table$MAPPING_CATEGORY <- as.factor(d_out_table$MAPPING_CATEGORY)
vec <- c("MAPPING_CATEGORY", "CHEBI", "PRO", "VO", "NCBITaxon")
d_out_table <- d_out_table[vec]
d_out_table[is.na(d_out_table)] <- 0
table <- datatable(d_out_table)
# add table footer
htmltools::div(
class = "drug-mapping-data",
htmltools::div(class = "drug-mapping-data-footer",
htmltools::div( class = "drug-mapping-data-title",
"Source: OMOP2OBO v1.0 - OMOP v5.3"),
table),
)
```
Row {.tabset .tabset-fade}
-----------------------------------------------------------------------
### Measurement Mappings
```{r}
l_test = lab_data[,c(1, 2, 10)]
l_test$ONTOLOGY <- as.factor(l_test$ONTOLOGY)
l_out <- l_test %>%
group_by(l_test$ONTOLOGY, l_test$MAPPING_CATEGORY) %>%
tally(sort = T) %>%
ungroup()
# rename columns and reshape data so counts organize din rows by ontology
names(l_out)[names(l_out) == "l_test$ONTOLOGY"] <- "ONTOLOGY"
names(l_out)[names(l_out) == "l_test$MAPPING_CATEGORY"] <- "MAPPING_CATEGORY"
names(l_out)[names(l_out) == "n"] <- "COUNT"
l_out_plot <- cast(l_out, ONTOLOGY ~ MAPPING_CATEGORY)
# rename casted df and convert n/a values to 0
names(l_out_plot)<-str_replace_all(names(l_out_plot), c(" " = "." , "-" = "." ))
l_out_plot[is.na(l_out_plot)] <- 0
# create plot data
onts <- l_out_plot$ONTOLOGY
aca_df <- l_out_plot$Automatic.One.to.Many.Ancestor
acc_df <- l_out_plot$Automatic.One.to.Many.Concept
aea_df <- l_out_plot$Automatic.One.to.One.Ancestor
aec_df <- l_out_plot$Automatic.One.to.One.Concept
m_df <- l_out_plot$Manual.One.to.One.Concept
mc_df <- l_out_plot$Manual.One.to.Many.Concept
cs_df <- l_out_plot$Cosine.Similarity.One.to.One.Concept
data3 <- data.frame(onts, aca_df, acc_df, aea_df, aec_df, m_df, mc_df, cs_df)
# create plot
fig <- plot_ly(data3, x = ~onts, y = ~aca_df, type = 'bar', name = aca)
fig <- fig %>% add_trace(y = ~acc_df, name = acc)
fig <- fig %>% add_trace(y = ~aea_df, name = aea)
fig <- fig %>% add_trace(y = ~aec_df, name = aec)
fig <- fig %>% add_trace(y = ~m_df, name = m)
fig <- fig %>% add_trace(y = ~mc_df, name = mc)
fig <- fig %>% add_trace(y = ~cs_df, name = cs)
fig <- fig %>% layout(yaxis = list(title = 'Concept Count'),
xaxis = list(title = 'Ontology'),
title = "Mapped Measurement Results by Mapping Category and Ontology",
barmode = 'group')
fig
```
### Measurement Mapping Summary
```{r table3}
# get concept mapping counts by ontology and mapping category
l_out_table <- cast(l_out, MAPPING_CATEGORY ~ ONTOLOGY)
# create table
# declare factors, reorder columns, and make table
l_out_table$MAPPING_CATEGORY <- as.factor(l_out_table$MAPPING_CATEGORY)
vec <- c("MAPPING_CATEGORY", "HPO", "UBERON", "CHEBI", "CL", "PRO", "NCBITaxon")
l_out_table <- l_out_table[vec]
l_out_table[is.na(l_out_table)] <- 0
table <- datatable(l_out_table)
# add table footer
htmltools::div(
class = "lab-mapping-data",
htmltools::div(class = "lab-mapping-data-footer",
htmltools::div( class = "lab-mapping-data-title",
"Source: OMOP2OBO v1.0 - OMOP v5.3"),
table),
)
```
<!-- =======================+====== DATA PAGE =================+============ -->
Data {data-icon="fa-table"}
=====================================
```{r comment1}
htmltools::div(
class = "dx-mapping-data",
htmltools::div(class = "mapping-data-header",
htmltools::div(
class = "mapping-data-header",
"Source: OMOP2OBO v1.0 - Data limited to 5,000 rows"))
)
```
Row {data-height=1500 data-width=1500 .tabset}
-------------------------------------
### Condition Occurrence Mappings
```{r table4}
# declare factors
cond_data$ONTOLOGY <- as.factor(cond_data$ONTOLOGY)
cond_data$CONCEPT_ID <- as.factor(cond_data$CONCEPT_ID)
cond_data$CONCEPT_CODE <- as.factor(cond_data$CONCEPT_CODE)
cond_data$MAPPING_CATEGORY <- as.factor(cond_data$MAPPING_CATEGORY)
# sort and reduce data set for app
cond_data <- cond_data[order(cond_data$CONCEPT_ID),]
cond_data_subset <- cond_data[1:5000, ]
# make table
table <- datatable(cond_data_subset, filter = "top", options = list(
pageLength = 10,
lengthMenu = c(10, 25, 50, 100, 500),
searchHighlight = TRUE))
table
```
### Drug Ingredient Mappings
```{r table5}
# declare factors
drug_data$ONTOLOGY <- as.factor(drug_data$ONTOLOGY)
drug_data$CONCEPT_ID <- as.factor(drug_data$CONCEPT_ID)
drug_data$CONCEPT_CODE <- as.factor(drug_data$CONCEPT_CODE)
drug_data$MAPPING_CATEGORY <- as.factor(drug_data$MAPPING_CATEGORY)
# sort and reduce data set for app
drug_data <- drug_data[order(drug_data$CONCEPT_ID),]
drug_data_subset <- drug_data[1:5000, ]
# make table
table <- datatable(drug_data_subset, filter = "top", options = list(
pageLength = 10,
lengthMenu = c(10, 25, 50, 100, 500),
searchHighlight = TRUE))
table
```
### Measurement Mappings
```{r table6}
# declare factors
lab_data$ONTOLOGY <- as.factor(lab_data$ONTOLOGY)
lab_data$CONCEPT_ID <- as.factor(lab_data$CONCEPT_ID)
lab_data$CONCEPT_CODE <- as.factor(lab_data$CONCEPT_CODE)
lab_data$SCALE <- as.factor(lab_data$SCALE)
lab_data$RESULT_TYPE <- as.factor(lab_data$RESULT_TYPE)
lab_data$MAPPING_CATEGORY <- as.factor(lab_data$MAPPING_CATEGORY)
# sort and reduce data set for app
lab_data <- drug_data[order(lab_data$CONCEPT_ID),]
lab_data_subset <- lab_data[1:5000, ]
# make table
table <- datatable(lab_data_subset, filter = "top", options = list(
pageLength = 10,
lengthMenu = c(10, 25, 50, 100, 500),
searchHighlight = TRUE))
table
```
<!-- ============================= ABOUT PAGE ============================= -->
About {data-icon="fa-address-card"}
=====================================
-----------------------------------------------------------------------
🗺 **What is OMOP2OBO?**
-----------------------------------------------------------------------
*Motivation*
- A significant promise of electronic health records (EHRs) lies in the ability to perform large-scale investigations of mechanistic drivers of complex diseases. Despite significant progress in biomarker discovery, this promise remains largely aspirational ([`PMID:32335224`](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179504/), [`PMID:30304648`](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503847/)).
- Linking molecular data to clinical data stored in EHR data will support biologically meaningful analyses, and can be achieved by integrating knowledge about biology and pathophysiology from multiple ontologies.
- Similar to clinical terminologies, computational ontologies are classification systems that provide detailed representations of a specific domain of knowledge consisting of a set of concepts and logically defined relationships. Unlike most clinical terminologies, ontologies are computable and interoperable, which means they can be logically verified using description logics and easily integrated with other ontologies and non-ontological data including data from basic science and clinical research ([`PMID:30304648`](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503847/)).
- The usefulness of normalizing (i.e. mapping or annotating) clinical data to ontologies, like those in the Open Biological and Biomedical Ontologies ([OBO](http://www.obofoundry.org/)) Foundry, has been recognized as a fundamental need for the future of deep phenotyping ([`PMID:32335224`](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179504/)).
- Existing work has largely been limited to using ontologies to improve phenotyping in specific diseases (i.e. infectious [[`PMID:31160594`](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546783/)] and rare diseases [[`PMID:31231902`](https://pubmed.ncbi.nlm.nih.gov/31231902/)]) and for the enhancement of specific biological and clinical domains (e.g. laboratory tests [[`PMID:31119199`](https://pubmed.ncbi.nlm.nih.gov/31119199/)] and diagnoses [[`PMID:29295235`](https://pubmed.ncbi.nlm.nih.gov/29295235/)]).
- Unfortunately, learning algorithms are not yet able to capture the complex clinical and biological semantics underlying these concepts and their relationships. Until a comprehensive, robust resource that includes mappings between multiple clinical domains and biomedical ontologies is created and validated, automatic generation of inference between patient-level clinical observations and biological knowledge will not be possible.
*Objective*
We developed `OMOP2OBO`, the first health system-wide integration and alignment between the Observational Health Data Sciences and Informatics' Observational Medical Outcomes Partnership ([OMOP](https://www.ohdsi.org/data-standardization/)) standardized clinical terminologies and eight OBO biomedical ontologies spanning diseases, phenotypes, anatomical entities, cell types, organisms, chemicals, metabolites, hormones, vaccines, and proteins.
<div>
```{r picture1, echo = F, fig.width=10, fig.height=10}
knitr::include_graphics("https://user-images.githubusercontent.com/8030363/182207267-f674e6c0-af16-4b94-bdc1-45ddea43a7f7.png")
```
</div>
<br><br>
-----------------------------------------------------------------------
🤔 **Mappings Overview**
-----------------------------------------------------------------------
Each mapping file contains several tabs:
- For the Drug ingredient and measurement files, the first tab will contain extended information on the `OMOP` clinical terminologies that were used to create the mappings.
- The condition mapping data file contains a similar, but less extensive set of data, which is present within each ontology tab. For all files the remaining tabs containing the results from mapping to a specific ontology. For conditions, symptoms were aligned to the [`Human Phenotype Ontology (HPO)`](https://hpo.jax.org/) and diagnoses were aligned to the [`Mondo Disease Ontology (Mondo)`](http://mondo.monarchinitiative.org/).
- For drug ingredients, all concepts were aligned to at least one [`Chemical Entities of Biological Interest (ChEBI)`](https://www.ebi.ac.uk/chebi/) concept and the remaining ontologies ([`National Center for Biotechnology Information Taxon Ontology (NCBITaxon)`](https://www.ncbi.nlm.nih.gov/taxonomy), [`Protein Ontology (PR)`](https://proconsortium.org/), and [`Vaccine Ontology (VO)`](https://obofoundry.org/ontology/vo.html)) were mapped by their drug class and/or type (e.g., biologics versus vaccines).
- For each measurement, all levels of the test result (results above, below, and within a reference range) were mapped, not only those deemed clinically relevant. Results outside of a reference range, but not currently deemed clinically relevant (as advised by the literature or consultation via domain expert), were annotated to the nearest relevant ontology concept ancestor. The interpreted measurement result was mapped to the `HPO`, the measurement substance (body fluids, tissues, and organs via the [`Uber Anatomy Ontology (Uberon)`](https://uberon.github.io/), the entity being measured (chemicals, metabolites, or hormones via `ChEBI`; cell types via the [`Cell Ontology (CL)`](https://obofoundry.org/ontology/cl.html); and proteins and protein complexes via `PR)`, and the species of the measured entities (organism taxonomy via `NCBITaxon`).
The figure below provides an example of a `OMOP2OBO` mapping to an `OMOP` condition concept. This figure is include to provide detail into the different components that are included in each mapping.
<div>
```{r picture2, echo = F, fig.width=10, fig.height=10}
knitr::include_graphics("https://user-images.githubusercontent.com/8030363/181406541-16b51779-25a7-4b85-b09e-30b8dc71be39.png")
```
</div>
<br><br>
-----------------------------------------------------------------------
✅ **Mapping Verification and Validation**
-----------------------------------------------------------------------
To verify that the mappings are both clinically and biologically meaningful, we have performed extensive experiments to verify the [accuracy](https://github.com/callahantiff/OMOP2OBO/wiki/Accuracy), [generalizability](https://github.com/callahantiff/OMOP2OBO/wiki/Generalizability), and [logical consistency](https://github.com/callahantiff/OMOP2OBO/wiki/Consistency) of each released mapping set. Please note that the consistency experiments are still in progressand have only been applied to the `HPO` and `MONDO` mappings at this time.
<br>
***OMOP2OBO Users and Usecases***
The OMOP2OBO mappings have been used in several interesting usecases.
*Patient Representation Learning and Rare Disease Subphenotyping*
- Callahan TJ, Hunter LE, Kahn MG. Leveraging a Neural-Symbolic Representation of Biomedical Knowledge to Improve Pediatric Subphenotyping. 2022. [`Zenodo:5746173`](https://doi.org/10.5281/zenodo.5746173)
*Understanding and Investigating Long COVID or Post Acute Sequelae of SARS-CoV2 Infection (PASC)*
- Rando HM, Bennett TD, Byrd JB, t al. Challenges in Defining Long COVID: Striking Differences across Literature, Electronic Health Records, and Patient-Reported Information. medRxiv. 2021. [`medRxiv:21253896`](https://doi.org/10.1101/2021.03.20.21253896)
- Coleman B, Casiraghi E, Callahan TJ, et al. Manifestations Associated with Post Acute Sequelae of SARS-CoV2 Infection (PASC) Predict Diagnosis of New-Onset Psychiatric Disease: Findings from the NIH N3C and RECOVER Studies. medRxiv. 2022. [`medRxiv:22277388`](https://www.medrxiv.org/content/10.1101/2022.07.08.22277388)
- Reese J, Blau H, Bergquist T, et al. Generalizable Long COVID Subtypes: Findings from the NIH N3C and RECOVER Programs. medRxiv. 2022. [`medRxiv:22275398`](https://www.medrxiv.org/content/10.1101/2022.05.24.22275398v1)
- Deer RR, Rock MA, Vasilevsky N, et al. Characterizing Long COVID: Deep Phenotype of a Complex Condition. eBioMedicine. 2021; 74:103722. [`DOI:10.1016/j.ebiom.2021.103722`](https://doi.org/10.1016/j.ebiom.2021.103722)
<br><br>
-----------------------------------------------------------------------
📥 **Download Current Mapping Release (`v1.0`)**
-----------------------------------------------------------------------
Additional information on each of the mapping sets is provided through Zenodo. Please be sure to read the information on these pages prior to using the mappings.
- [`Condition Occurrence Mappings`](https://doi.org/10.5281/zenodo.6774363)
- [`Drug Exposure Ingredient Mappings`](https://doi.org/10.5281/zenodo.6774401)
- [`Measurement Mappings`](https://doi.org/10.5281/zenodo.6774443)
*Please note that the mappings shown on the [Data](http://tiffanycallahan.com/OMOP2OBO_Dashboard/#data) page have been limited to the first 5,000 concepts identifiers (sorted ascending).*
<br><br>
-----------------------------------------------------------------------
✨ **The OMOP2OBO Mapping Dashboard**
-----------------------------------------------------------------------
The OMOP2OBO Dashboard provides up-to-date information on the current `OMOP2OBO` mapping release. This dashboard is built with R using [`Rmarkdown`](https://rmarkdown.rstudio.com/) and the [`flexdashboard`](https://rmarkdown.rstudio.com/flexdashboard/) framework. The code behind the dashboard available [here](https://github.com/callahantiff/OMOP2OBO_Dashboard).
<br><br>
-----------------------------------------------------------------------
💻 **Resources and Contact**
-----------------------------------------------------------------------
<!-- ***Manuscript*** -->
<!-- <PLACEHOLDER FOR MANUSCRIPT OR PREPRINT> -->
***Resources***
- [`OMOP2OBO Algorithm`](https://github.com/callahantiff/OMOP2OBO)
- [`OMOP2OBO Wiki`](https://github.com/callahantiff/OMOP2OBO/wiki)
- [`Zenodo Community`](https://zenodo.org/communities/omop2obo)
***Contact***
We’d love to hear from you! To get in touch with us, please
🧵 Join or start a new [discussion](https://github.com/callahantiff/OMOP2OBO_Dashboard/discussions)
🎯 Create an [issue](https://github.com/callahantiff/OMOP2OBO_Dashboard/issues)
💌 Send us an [email](https://mail.google.com/mail/u/0/?view=cm&fs=1&tf=1&to=callahantiff@gmail.com)