-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconditioned_model.py
237 lines (182 loc) · 9.93 KB
/
conditioned_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn as nn
import random
import numpy as np
from modules.encoder import EncoderCNN, EncoderLabels
from modules.transformer_decoder import DecoderTransformer
from modules.multihead_attention import MultiheadAttention
from utils.metrics import softIoU, MaskedCrossEntropyCriterion
import pickle
import os
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# one hot vector encoding funct
def label2onehot(labels, pad_value):
# input labels to one hot vector
inp_ = torch.unsqueeze(labels, 2)
one_hot = torch.FloatTensor(labels.size(0), labels.size(1), pad_value + 1).zero_().to(device)
one_hot.scatter_(2, inp_, 1)
one_hot, _ = one_hot.max(dim=1)
# remove pad position
one_hot = one_hot[:, :-1]
# eos position is always 0
one_hot[:, 0] = 0
return one_hot
def mask_from_eos(ids, eos_value, mult_before=True):
mask = torch.ones(ids.size()).to(device).byte()
mask_aux = torch.ones(ids.size(0)).to(device).byte()
# find eos in ingredient prediction
for idx in range(ids.size(1)):
# force mask to have 1s in the first position to avoid division by 0 when predictions start with eos
if idx == 0:
continue
if mult_before:
mask[:, idx] = mask[:, idx] * mask_aux
mask_aux = mask_aux * (ids[:, idx] != eos_value)
else:
mask_aux = mask_aux * (ids[:, idx] != eos_value)
mask[:, idx] = mask[:, idx] * mask_aux
return mask
def get_model(args, ingr_vocab_size, instrs_vocab_size):
# build ingredients embedding
encoder_ingrs = EncoderLabels(args.embed_size, ingr_vocab_size,
args.dropout_encoder, scale_grad=False).to(device)
# build image model
encoder_image = EncoderCNN(args.embed_size, args.dropout_encoder, args.image_model)
decoder = DecoderTransformer(args.embed_size, instrs_vocab_size,
dropout=args.dropout_decoder_r, seq_length=args.maxseqlen,
num_instrs=args.maxnuminstrs,
attention_nheads=args.n_att, num_layers=args.transf_layers,
normalize_before=True,
normalize_inputs=False,
last_ln=False,
scale_embed_grad=False)
ingr_decoder = DecoderTransformer(args.embed_size, ingr_vocab_size, dropout=args.dropout_decoder_i,
seq_length=args.maxnumlabels,
num_instrs=1, attention_nheads=args.n_att_ingrs,
pos_embeddings=False,
num_layers=args.transf_layers_ingrs,
learned=False,
normalize_before=True,
normalize_inputs=True,
last_ln=True,
scale_embed_grad=False)
# recipe loss
criterion = MaskedCrossEntropyCriterion(ignore_index=[instrs_vocab_size-1], reduce=False)
# ingredients loss
label_loss = nn.BCELoss(reduce=False)
eos_loss = nn.BCELoss(reduce=False)
model = InverseCookingModel(encoder_ingrs, decoder, ingr_decoder, encoder_image,
crit=criterion, crit_ingr=label_loss, crit_eos=eos_loss,
pad_value=ingr_vocab_size-1,
ingrs_only=args.ingrs_only, recipe_only=args.recipe_only,
label_smoothing=args.label_smoothing_ingr)
return model
class InverseCookingModel(nn.Module):
def __init__(self, ingredient_encoder, recipe_decoder, ingr_decoder, image_encoder,
crit=None, crit_ingr=None, crit_eos=None,
pad_value=0, ingrs_only=True,
recipe_only=False, label_smoothing=0.0):
super(InverseCookingModel, self).__init__()
self.ingredient_encoder = ingredient_encoder
self.recipe_decoder = recipe_decoder
self.image_encoder = image_encoder
self.ingredient_decoder = ingr_decoder
self.crit = crit
self.crit_ingr = crit_ingr
self.pad_value = pad_value
self.ingrs_only = ingrs_only
self.recipe_only = recipe_only
self.crit_eos = crit_eos
self.label_smoothing = label_smoothing
def forward(self, img_inputs, captions, target_ingrs,
sample=False, keep_cnn_gradients=False):
if sample:
return self.sample(img_inputs, greedy=True)
targets = captions[:, 1:]
targets = targets.contiguous().view(-1)
# is this the image embedding? :0
img_features = self.image_encoder(img_inputs, keep_cnn_gradients)
losses = {}
target_one_hot = label2onehot(target_ingrs, self.pad_value)
target_one_hot_smooth = label2onehot(target_ingrs, self.pad_value)
# ingredient prediction
if not self.recipe_only:
target_one_hot_smooth[target_one_hot_smooth == 1] = (1-self.label_smoothing)
target_one_hot_smooth[target_one_hot_smooth == 0] = self.label_smoothing / target_one_hot_smooth.size(-1)
# decode ingredients with transformer
# autoregressive mode for ingredient decoder
ingr_ids, ingr_logits = self.ingredient_decoder.sample(None, None, greedy=True,
temperature=1.0, img_features=img_features,
first_token_value=0, replacement=False)
ingr_logits = torch.nn.functional.softmax(ingr_logits, dim=-1)
# find idxs for eos ingredient
# eos probability is the one assigned to the first position of the softmax
eos = ingr_logits[:, :, 0]
target_eos = ((target_ingrs == 0) ^ (target_ingrs == self.pad_value))
eos_pos = (target_ingrs == 0)
eos_head = ((target_ingrs != self.pad_value) & (target_ingrs != 0))
# select transformer steps to pool from
mask_perminv = mask_from_eos(target_ingrs, eos_value=0, mult_before=False)
ingr_probs = ingr_logits * mask_perminv.float().unsqueeze(-1)
ingr_probs, _ = torch.max(ingr_probs, dim=1)
# ignore predicted ingredients after eos in ground truth
ingr_ids[mask_perminv == 0] = self.pad_value
ingr_loss = self.crit_ingr(ingr_probs, target_one_hot_smooth)
ingr_loss = torch.mean(ingr_loss, dim=-1)
losses['ingr_loss'] = ingr_loss
# cardinality penalty
losses['card_penalty'] = torch.abs((ingr_probs*target_one_hot).sum(1) - target_one_hot.sum(1)) + \
torch.abs((ingr_probs*(1-target_one_hot)).sum(1))
eos_loss = self.crit_eos(eos, target_eos.float())
mult = 1/2
# eos loss is only computed for timesteps <= t_eos and equally penalizes 0s and 1s
losses['eos_loss'] = mult*(eos_loss * eos_pos.float()).sum(1) / (eos_pos.float().sum(1) + 1e-6) + \
mult*(eos_loss * eos_head.float()).sum(1) / (eos_head.float().sum(1) + 1e-6)
# iou
pred_one_hot = label2onehot(ingr_ids, self.pad_value)
# iou sample during training is computed using the true eos position
losses['iou'] = softIoU(pred_one_hot, target_one_hot)
if self.ingrs_only:
return losses
# encode ingredients
target_ingr_feats = self.ingredient_encoder(target_ingrs)
target_ingr_mask = mask_from_eos(target_ingrs, eos_value=0, mult_before=False)
target_ingr_mask = target_ingr_mask.float().unsqueeze(1)
outputs, ids = self.recipe_decoder(target_ingr_feats, target_ingr_mask, captions, img_features)
outputs = outputs[:, :-1, :].contiguous()
outputs = outputs.view(outputs.size(0) * outputs.size(1), -1)
loss = self.crit(outputs, targets)
losses['recipe_loss'] = loss
return losses
def sample(self, img_inputs, greedy=True, temperature=1.0, beam=-1, true_ingrs=None):
outputs = dict()
img_features = self.image_encoder(img_inputs)
if not self.recipe_only:
'''
ingr_ids, ingr_probs = self.ingredient_decoder.sample(None, None, greedy=True, temperature=temperature,
beam=-1,
img_features=img_features, first_token_value=0,
replacement=False)
# mask ingredients after finding eos
sample_mask = mask_from_eos(ingr_ids, eos_value=0, mult_before=False)
ingr_ids[sample_mask == 0] = self.pad_value
outputs['ingr_ids'] = ingr_ids
outputs['ingr_probs'] = ingr_probs.data
mask = sample_mask
input_mask = mask.float().unsqueeze(1)
'''
input_feats = self.ingredient_encoder(ingr_embedding)
if self.ingrs_only:
return outputs
# option during sampling to use the real ingredients and not the predicted ones to infer the recipe
if true_ingrs is not None:
input_mask = mask_from_eos(true_ingrs, eos_value=0, mult_before=False)
true_ingrs[input_mask == 0] = self.pad_value
input_feats = self.ingredient_encoder(true_ingrs)
input_mask = input_mask.unsqueeze(1)
ids, probs = self.recipe_decoder.sample(input_feats, input_mask, greedy, temperature, beam, img_features, 0,
last_token_value=1)
outputs['recipe_probs'] = probs.data
outputs['recipe_ids'] = ids
return outputs