-
Notifications
You must be signed in to change notification settings - Fork 115
/
example_sparse_models.m
154 lines (130 loc) · 2.41 KB
/
example_sparse_models.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
%
% References:
%
% C. Lu. A Library of ADMM for Sparse and Low-rank Optimization. National University of Singapore, June 2016.
% https://github.com/canyilu/LibADMM.
% C. Lu, J. Feng, S. Yan, Z. Lin. A Unified Alternating Direction Method of Multipliers by Majorization
% Minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, pp. 527-541, 2018
%
addpath(genpath(cd))
clear
%% Examples for testing the sparse models
% For detailed description of the sparse models, please refer to the Manual.
%% generate toy data
d = 10;
na = 200;
nb = 100;
A = randn(d,na);
X = randn(na,nb);
B = A*X;
b = B(:,1);
opts.tol = 1e-6;
opts.max_iter = 1000;
opts.rho = 1.1;
opts.mu = 1e-4;
opts.max_mu = 1e10;
opts.DEBUG = 0;
%% l1
[X2,obj,err,iter] = l1(A,B,opts);
iter
obj
err
stem(X2(:,1))
%% group l1
g_num = 5;
g_len = round(na/g_num);
for i = 1 : g_num-1
G{i} = (i-1)*g_len+1 : i*g_len;
end
G{g_num} = (g_num-1)*g_len+1:na;
[X2,obj,err,iter] = groupl1(A,B,G,opts);
iter
obj
err
stem(X2(:,1))
%% elastic net
lambda = 0.01;
[X2,obj,err,iter] = elasticnet(A,B,lambda,opts);
iter
obj
err
stem(X2(:,1))
%% fused Lasso
lambda = 0.01;
[x,obj,err,iter] = fusedl1(A,b,lambda,opts);
iter
obj
err
stem(x)
%% trace Lasso
[x,obj,err,iter] = tracelasso(A,b,opts);
iter
obj
err
stem(x)
%% k-support norm
k = 10;
[X,err,iter] = ksupport(A,B,k,opts);
iter
err
stem(X(:,1));
%% --------------------------------------------------------------
%% regularized l1
lambda = 0.01;
opts.loss = 'l1';
[X,E,obj,err,iter] = l1R(A,B,lambda,opts);
iter
obj
err
stem(X(:,1))
%% regularized group Lasso
g_num = 5;
g_len = round(na/g_num);
for i = 1 : g_num-1
G{i} = (i-1)*g_len+1 : i*g_len;
end
G{g_num} = (g_num-1)*g_len+1:na;
lambda = 1;
opts.loss = 'l1';
[X,E,obj,err,iter] = groupl1R(A,B,G,lambda,opts);
iter
obj
err
stem(X(:,1))
%% regularized elastic net
lambda1 = 10;
lambda2 = 10;
opts.loss = 'l1';
[X,E,obj,err,iter] = elasticnetR(A,B,lambda1,lambda2,opts);
iter
obj
err
stem(X(:,1))
% stem(E(:,1))
%% regularized fused Lasso
lambda1 = 10;
lambda2 = 10;
opts.loss = 'l1';
[X,E,obj,err,iter] = fusedl1R(A,b,lambda1,lambda2,opts);
iter
obj
err
stem(X(:,1))
stem(E(:,1))
%% regularized trace Lasso
lambda = 0.1;
opts.loss = 'l1';
tic
[x,e,obj,err,iter] = tracelassoR(A,b,lambda,opts);
toc
iter
obj
err
stem(x)
%% regularized k-support norm
lambda = 0.1;
k = 10;
[X,E,err,iter] = ksupportR(A,B,lambda,k,opts);
iter
err
stem(X(:,1));