-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
hashing.h
1021 lines (932 loc) · 44.7 KB
/
hashing.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Part of the Carbon Language project, under the Apache License v2.0 with LLVM
// Exceptions. See /LICENSE for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#ifndef CARBON_COMMON_HASHING_H_
#define CARBON_COMMON_HASHING_H_
#include <concepts>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include "common/check.h"
#include "common/ostream.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/FormatVariadic.h"
#ifdef __ARM_ACLE
#include <arm_acle.h>
#endif
namespace Carbon {
// A 64-bit hash code produced by `Carbon::HashValue`.
//
// This provides methods for extracting high-quality bits from the hash code
// quickly.
//
// This class can also be a hashing input when recursively hashing more complex
// data structures.
class HashCode : public Printable<HashCode> {
public:
HashCode() = default;
constexpr explicit HashCode(uint64_t value) : value_(value) {}
friend constexpr auto operator==(HashCode lhs, HashCode rhs) -> bool {
return lhs.value_ == rhs.value_;
}
friend constexpr auto operator!=(HashCode lhs, HashCode rhs) -> bool {
return lhs.value_ != rhs.value_;
}
// Extracts an index from the hash code as a `ssize_t`. This index covers the
// full range of that type, and may even be negative. Typical usage will
// involve masking this down to some positive range using a bitand with a mask
// computed from a power-of-two size. This routine doesn't do any masking to
// ensure a positive index to avoid redundant computations with the typical
// user of the index.
constexpr auto ExtractIndex() -> ssize_t;
// Extracts an index and a fixed `N`-bit tag from the hash code.
//
// This extracts these values from the position of the hash code which
// maximizes the entropy in the tag and the low bits of the index, as typical
// indices will be further masked down to fall in a smaller range.
//
// `N` must be in the range [1, 32]. The returned index will be in the range
// [0, 2**(64-N)).
template <int N>
constexpr auto ExtractIndexAndTag() -> std::pair<ssize_t, uint32_t>;
// Extract the full 64-bit hash code as an integer.
//
// The methods above should be preferred rather than directly manipulating
// this integer. This is provided primarily to enable Merkle-tree hashing or
// other recursive hashing where that is needed or more efficient.
explicit operator uint64_t() const { return value_; }
auto Print(llvm::raw_ostream& out) const -> void {
out << llvm::formatv("{0:x16}", value_);
}
private:
uint64_t value_ = 0;
};
// Computes a hash code for the provided value, incorporating the provided seed.
//
// The seed doesn't need to be of any particular high quality, but a zero seed
// has bad effects in several places. Prefer the unseeded routine rather than
// providing a zero here.
//
// This **not** a cryptographically secure or stable hash -- it is only designed
// for use with in-memory hash table style data structures. Being fast and
// effective for that use case is the guiding principle of its design.
//
// There is no guarantee that the values produced are stable from execution to
// execution. For speed and quality reasons, the implementation does not
// introduce any variance to defend against accidental dependencies. As a
// consequence, it is strongly encouraged to use a seed that varies from
// execution to execution to avoid depending on specific values produced.
//
// The algorithm used is most heavily based on [Abseil's hashing algorithm][1],
// with some additional ideas and inspiration from the fallback hashing
// algorithm in [Rust's AHash][2] and the [FxHash][3] function. However, there
// are also *significant* changes introduced here.
//
// [1]: https://github.com/abseil/abseil-cpp/tree/master/absl/hash/internal
// [2]: https://github.com/tkaitchuck/aHash/wiki/AHash-fallback-algorithm
// [3]: https://docs.rs/fxhash/latest/fxhash/
//
// This hash algorithm does *not* defend against hash flooding. While it can be
// viewed as "keyed" on the seed, it is expected to be possible to craft inputs
// for some data types that cancel out the seed used and manufacture endlessly
// colliding sets of keys. In general, this function works to be *fast* for hash
// tables. If you need to defend against hash flooding, either directly use a
// data structure with strong worst-case guarantees, or a hash table which
// detects catastrophic collisions and falls back to such a data structure.
//
// This hash function is heavily optimized for *latency* over *quality*. Modern
// hash tables designs can efficiently handle reasonable collision rates,
// including using extra bits from the hash to avoid all efficiency coming from
// the same low bits. Because of this, low-latency is significantly more
// important for performance than high-quality, and this is heavily leveraged.
// The result is that the hash codes produced *do* have significant avalanche
// problems for small keys. The upside is that the latency for hashing integers,
// pointers, and small byte strings (up to 32-bytes) is exceptionally low, and
// essentially a small constant time instruction sequence.
//
// No exotic instruction set extensions are required, and the state used is
// small. It does rely on being able to get the low- and high-64-bit results of
// a 64-bit multiply efficiently.
//
// The function supports many typical data types such as primitives, string-ish
// views, and types composing primitives transparently like pairs, tuples, and
// array-ish views. It is also extensible to support user-defined types.
//
// The builtin support for string-like types include:
// - `std::string_view`
// - `std::string`
// - `llvm::StringRef`
// - `llvm::SmallString`
//
// This function supports heterogeneous lookup between all of the string-like
// types. It also supports heterogeneous lookup between pointer types regardless
// of pointee type and `nullptr`.
//
// However, these are the only heterogeneous lookup support including for the
// builtin in, standard, and LLVM types. Notably, each different size and
// signedness integer type may hash differently for efficiency reasons. Hash
// tables should pick a single integer type in which to manage keys and do
// lookups.
//
// To add support for your type, you need to implement a customization point --
// a free function that can be found by ADL for your type -- called
// `CarbonHashValue` with the following signature:
//
// ```cpp
// auto CarbonHashValue(const YourType& value, uint64_t seed) -> HashCode;
// ```
//
// The extension point needs to ensure that values that compare equal (including
// any comparisons with different types that might be used with a hash table of
// `YourType` keys) produce the same `HashCode` values.
//
// `HashCode` values should typically be produced using the `Hasher` helper type
// below. See its documentation for more details about implementing these
// customization points and how best to incorporate the value's state into a
// `HashCode`.
//
// For two input values that are almost but not quite equal, the extension
// point should maximize the probability of each bit of their resulting
// `HashCode`s differing. More formally, `HashCode`s should exhibit an
// [avalanche effect][4]. However, while this is desirable, it should be
// **secondary** to low latency. The intended use case of these functions is not
// cryptography but in-memory hashtables where the latency and overhead of
// computing the `HashCode` is *significantly* more important than achieving a
// particularly high quality. The goal is to have "just enough" avalanche
// effect, but there is not a fixed criteria for how much is enough. That should
// be determined through practical experimentation with a hashtable and
// distribution of keys.
//
// [4]: https://en.wikipedia.org/wiki/Avalanche_effect
template <typename T>
inline auto HashValue(const T& value, uint64_t seed) -> HashCode;
// The same as the seeded version of `HashValue` but without callers needing to
// provide a seed.
//
// Generally prefer the seeded version, but this is available if there is no
// reasonable seed. In particular, this will behave better than using a seed of
// `0`. One important use case is for recursive hashing of sub-objects where
// appropriate or needed.
template <typename T>
inline auto HashValue(const T& value) -> HashCode;
// Object and APIs that eventually produce a hash code.
//
// This type is primarily used by types to implement a customization point
// `CarbonHashValue` that will in turn be used by the `HashValue` function. See
// the `HashValue` function for details of that extension point.
//
// The methods on this type can be used to incorporate data from your
// user-defined type into its internal state which can be converted to a
// `HashCode` at any time. These methods will only produce the same `HashCode`
// if they are called in the exact same order with the same arguments -- there
// are no guaranteed equivalences between calling different methods.
//
// Example usage:
// ```cpp
// auto CarbonHashValue(const MyType& value, uint64_t seed) -> HashCode {
// Hasher hasher(seed);
// hasher.HashTwo(value.x, value.y);
// return static_cast<HashCode>(hasher);
// }
// ```
//
// This type's API also reflects the reality that high-performance hash tables
// are used with keys that are generally small and cheap to hash.
//
// To ensure this type's code is optimized effectively, it should typically be
// used as a local variable and not passed across function boundaries
// unnecessarily.
//
// The type also provides a number of static helper functions and static data
// members that may be used by authors of `CarbonHashValue` implementations to
// efficiently compute the inputs to the core `Hasher` methods, or even to
// manually do some amounts of hashing in performance-tuned ways outside of the
// methods provided.
class Hasher {
public:
Hasher() = default;
explicit Hasher(uint64_t seed) : buffer(seed) {}
Hasher(Hasher&& arg) = default;
Hasher(const Hasher& arg) = delete;
auto operator=(Hasher&& rhs) -> Hasher& = default;
// Extracts the current state as a `HashCode` for use.
explicit operator HashCode() const { return HashCode(buffer); }
// Incorporates a variable number of objects into the `hasher`s state.
//
// The `values` here can be anything hashable, and this routine handles
// recursively hashing a single value as appropriate and then in turn
// incorporating that. However, it is optimized for relatively small numbers
// of values and/or small elements. A large tree structure will be better
// handled by a dedicated Merkle-tree decomposition rather than the ad-hoc one
// provided here. This routine's decomposition is mostly useful for combining
// N small bits of data with one recursively hashed entity.
//
// There is no guaranteed correspondence between the behavior of a single call
// with multiple parameters and multiple calls.
template <typename... Ts>
auto Hash(const Ts&... values) -> void;
// Incorporates an array of objects into the hasher's state.
//
// Similar to the variadic `Hash`, this will handle recursively hashing if
// necessary, but is optimized to avoid it when possible and is especially
// efficient when hashing a raw array of bytes.
//
// Note that this is especially inefficient when it must recursively hash for
// long arrays -- that pattern should be avoided if possible. It is usually
// more effective to optimize that pattern at a higher level with a dedicated
// hashing implementation.
template <typename T>
auto HashArray(llvm::ArrayRef<T> values) -> void;
// Incorporates an object into the hasher's state by hashing its object
// representation. Requires `value`'s type to have a unique object
// representation. This is primarily useful for builtin and primitive types.
//
// This can be directly used for simple users combining some aggregation of
// objects. However, when possible, prefer the variadic version below for
// aggregating several primitive types into a hash.
template <typename T>
requires std::has_unique_object_representations_v<T>
auto HashRaw(const T& value) -> void;
// Simpler and more primitive functions to incorporate state represented in
// `uint64_t` values into the hasher's state.
//
// These may be slightly less efficient than the `Hash` method above for a
// typical application code `uint64_t`, but are designed to work well even
// when relevant data has been packed into the `uint64_t` parameters densely.
auto HashDense(uint64_t data) -> void;
auto HashDense(uint64_t data0, uint64_t data1) -> void;
// A heavily optimized routine for incorporating a dynamically sized sequence
// of bytes into the hasher's state.
//
// This routine has carefully structured inline code paths for short byte
// sequences and a reasonably high bandwidth code path for longer sequences.
// The size of the byte sequence is always incorporated into the hasher's
// state along with the contents.
auto HashSizedBytes(llvm::ArrayRef<std::byte> bytes) -> void;
// Incorporate a dynamically sized sequence of bytes represented as an array
// of objects into the hasher's state.
template <typename T>
requires std::has_unique_object_representations_v<T>
auto HashSizedBytes(llvm::ArrayRef<T> data) -> void {
HashSizedBytes(llvm::ArrayRef<std::byte>(
reinterpret_cast<const std::byte*>(data.data()),
data.size() * sizeof(T)));
}
// An out-of-line, throughput-optimized routine for incorporating a
// dynamically sized sequence when the sequence size is guaranteed to be >32.
// The size is always incorporated into the state.
auto HashSizedBytesLarge(llvm::ArrayRef<std::byte> bytes) -> void;
// Utility functions to read data of various sizes efficiently into a
// 64-bit value. These pointers need-not be aligned, and can alias other
// objects. The representation of the read data in the `uint64_t` returned is
// not stable or guaranteed.
static auto Read1(const std::byte* data) -> uint64_t;
static auto Read2(const std::byte* data) -> uint64_t;
static auto Read4(const std::byte* data) -> uint64_t;
static auto Read8(const std::byte* data) -> uint64_t;
// Similar to the `ReadN` functions, but supports reading a range of different
// bytes provided by the size *without branching on the size*. The lack of
// branches is often key, and the code in these routines works to be efficient
// in extracting a *dynamic* size of bytes into the returned `uint64_t`. There
// may be overlap between different routines, because these routines are based
// on different implementation techniques that do have some overlap in the
// range of sizes they can support. Which routine is the most efficient for a
// size in the overlap isn't trivial, and so these primitives are provided
// as-is and should be selected based on the localized generated code and
// benchmarked performance.
static auto Read1To3(const std::byte* data, ssize_t size) -> uint64_t;
static auto Read4To8(const std::byte* data, ssize_t size) -> uint64_t;
static auto Read8To16(const std::byte* data, ssize_t size)
-> std::pair<uint64_t, uint64_t>;
// Reads the underlying object representation of a type into a 64-bit integer
// efficiently. Only supports types with unique object representation and at
// most 8-bytes large. This is typically used to read primitive types.
template <typename T>
requires std::has_unique_object_representations_v<T> && (sizeof(T) <= 8)
static auto ReadSmall(const T& value) -> uint64_t;
// The core of the hash algorithm is this mix function. The specific
// operations are not guaranteed to be stable but are described here for
// hashing authors to understand what to expect.
//
// Currently, this uses the same "mix" operation as in Abseil, AHash, and
// several other hashing algorithms. It takes two 64-bit integers, and
// multiplies them, capturing both the high 64-bit result and the low 64-bit
// result, and then XOR-ing those two halves together.
//
// A consequence of this operation is that a zero on either side will fail to
// incorporate any bits from the other side. Often, this is an acceptable rate
// of collision in practice. But it is worth being aware of and working to
// avoid common paths encountering this. For example, naively used this might
// cause different length all-zero byte strings to hash the same, essentially
// losing the length in the composition of the hash for a likely important
// case of byte sequence.
//
// Another consequence of the particular implementation is that it is useful
// to have a reasonable distribution of bits throughout both sides of the
// multiplication. However, it is not *necessary* as we do capture the
// complete 128-bit result. Where reasonable, the caller should XOR random
// data into operands before calling `Mix` to try and increase the
// distribution of bits feeding the multiply.
static auto Mix(uint64_t lhs, uint64_t rhs) -> uint64_t;
// An alternative to `Mix` that is significantly weaker but also lower
// latency. It should not be used when the input `uint64_t` is densely packed
// with data, but is a good option for hashing a single integer or pointer
// where the full 64-bits are sparsely populated and especially the high bits
// are often invariant between interestingly different values.
//
// This uses just the low 64-bit result of a multiply. It ensures the operand
// is good at diffusing bits, but inherently the high bits of the input will
// be (significantly) less often represented in the output. It also does some
// reversal to ensure the *low* bits of the result are the most useful ones.
static auto WeakMix(uint64_t value) -> uint64_t;
// We have a 64-byte random data pool designed to fit on a single cache line.
// This routine allows sampling it at byte indices, which allows getting 64 -
// 8 different random 64-bit results. The offset must be in the range [0, 56).
static auto SampleRandomData(ssize_t offset) -> uint64_t {
CARBON_DCHECK(offset + sizeof(uint64_t) < sizeof(StaticRandomData));
uint64_t data;
memcpy(&data,
reinterpret_cast<const unsigned char*>(&StaticRandomData) + offset,
sizeof(data));
return data;
}
// Random data taken from the hexadecimal digits of Pi's fractional component,
// written in lexical order for convenience of reading. The resulting
// byte-stream will be different due to little-endian integers. These can be
// used directly for convenience rather than calling `SampleRandomData`, but
// be aware that this is the underlying pool. The goal is to reuse the same
// single cache-line of constant data.
//
// The initializers here can be generated with the following shell script,
// which will generate 8 64-bit values and one more digit. The `bc` command's
// decimal based scaling means that without getting at least some extra hex
// digits rendered there will be rounding that we don't want so the script
// below goes on to produce one more hex digit ensuring the 8 initializers
// aren't rounded in any way. Using a higher scale won't cause the 8
// initializers here to change further.
//
// ```sh
// echo 'obase=16; scale=155; 4*a(1)' | env BC_LINE_LENGTH=500 bc -l \
// | cut -c 3- | tr '[:upper:]' '[:lower:]' \
// | sed -e "s/.\{4\}/&'/g" \
// | sed -e "s/\(.\{4\}'.\{4\}'.\{4\}'.\{4\}\)'/0x\1,\n/g"
// ```
static constexpr std::array<uint64_t, 8> StaticRandomData = {
0x243f'6a88'85a3'08d3, 0x1319'8a2e'0370'7344, 0xa409'3822'299f'31d0,
0x082e'fa98'ec4e'6c89, 0x4528'21e6'38d0'1377, 0xbe54'66cf'34e9'0c6c,
0xc0ac'29b7'c97c'50dd, 0x3f84'd5b5'b547'0917,
};
// We need a multiplicative hashing constant for both 64-bit multiplicative
// hashing fast paths and some other 128-bit folded multiplies. We use an
// empirically better constant compared to Knuth's, Rust's FxHash, and others
// we've tried. It was found by a search of uniformly distributed odd numbers
// and examining them for desirable properties when used as a multiplicative
// hash, however our search seems largely to have been lucky rather than
// having a highly effective set of criteria. We evaluated this constant by
// integrating this hash function with a hashtable and looking at the
// collision rates of several different but very fundamental patterns of keys:
// integers counting from 0, pointers allocated on the heap, and strings with
// character and size distributions matching C-style ASCII identifiers.
// Different constants found with this search worked better or less well, but
// fairly consistently across the different types of keys. At the end, far and
// away the best behaved constant we found was one of the first ones in the
// search and is what we use here.
//
// For reference, some other constants include one derived by diving 2^64 by
// Phi: 0x9e37'79b9'7f4a'7c15U -- see these sites for details:
// https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
// https://book.huihoo.com/data-structures-and-algorithms-with-object-oriented-design-patterns-in-c++/html/page214.html
//
// Another very good constant derived by minimizing repeating bit patterns is
// 0xdcb2'2ca6'8cb1'34edU and its bit-reversed form. However, this constant
// has observed frequent issues at roughly 4k pointer keys, connected to a
// common hashtable seed also being a pointer. These issues appear to occur
// both more often and have a larger impact relative to the number of keys
// than the rare cases where some combinations of pointer seeds and pointer
// keys create minor quality issues with the constant we use.
static constexpr uint64_t MulConstant = 0x7924'f9e0'de1e'8cf5U;
private:
uint64_t buffer;
};
// A dedicated namespace for `CarbonHashValue` overloads that are not found by
// ADL with their associated types. For example, primitive type overloads or
// overloads for types in LLVM's libraries.
//
// Note that these are internal implementation details and **not** part of the
// public API. They should not be used directly by client code.
namespace InternalHashDispatch {
template <typename T>
inline auto CarbonHashValue(llvm::ArrayRef<T> values, uint64_t seed)
-> HashCode {
Hasher hasher(seed);
hasher.HashArray(values);
return static_cast<HashCode>(hasher);
}
inline auto CarbonHashValue(llvm::ArrayRef<std::byte> bytes, uint64_t seed)
-> HashCode {
Hasher hasher(seed);
hasher.HashSizedBytes(bytes);
return static_cast<HashCode>(hasher);
}
// Hashing implementation for `llvm::StringRef`. We forward all the other
// string-like types that support heterogeneous lookup to this one.
inline auto CarbonHashValue(llvm::StringRef value, uint64_t seed) -> HashCode {
return CarbonHashValue(
llvm::ArrayRef(reinterpret_cast<const std::byte*>(value.data()),
value.size()),
seed);
}
inline auto CarbonHashValue(std::string_view value, uint64_t seed) -> HashCode {
return CarbonHashValue(llvm::StringRef(value.data(), value.size()), seed);
}
inline auto CarbonHashValue(const std::string& value, uint64_t seed)
-> HashCode {
return CarbonHashValue(llvm::StringRef(value.data(), value.size()), seed);
}
template <unsigned Length>
inline auto CarbonHashValue(const llvm::SmallString<Length>& value,
uint64_t seed) -> HashCode {
return CarbonHashValue(llvm::StringRef(value.data(), value.size()), seed);
}
// Support types that are array-like by building an `llvm::ArrayRef` out of
// them. We can't do this by accepting any type convertible to an `ArrayRef`
// because that type supports building a synthetic array out of any single
// element.
template <typename T>
inline auto CarbonHashValue(const std::vector<T>& arg, uint64_t seed)
-> HashCode {
return CarbonHashValue(llvm::ArrayRef(arg), seed);
}
template <typename T>
inline auto CarbonHashValue(const llvm::SmallVectorImpl<T>& arg, uint64_t seed)
-> HashCode {
return CarbonHashValue(llvm::ArrayRef(arg), seed);
}
template <typename T, size_t N>
inline auto CarbonHashValue(const std::array<T, N>& arg, uint64_t seed)
-> HashCode {
return CarbonHashValue(llvm::ArrayRef(arg), seed);
}
template <typename T, size_t N>
inline auto CarbonHashValue(const T (&arg)[N], uint64_t seed) -> HashCode {
return CarbonHashValue(llvm::ArrayRef(arg), seed);
}
inline auto CarbonHashValue(llvm::APInt value, uint64_t seed) -> HashCode {
Hasher hasher(seed);
if (LLVM_LIKELY(value.isSingleWord())) {
hasher.Hash(value.getBitWidth(), value.getZExtValue());
} else {
hasher.HashRaw(value.getBitWidth());
hasher.HashSizedBytes(
llvm::ArrayRef(value.getRawData(), value.getNumWords()));
}
return static_cast<HashCode>(hasher);
}
inline auto CarbonHashValue(llvm::APFloat value, uint64_t seed) -> HashCode {
Hasher hasher(seed);
// Hashing floating point numbers is complex and depends on the specific
// internal semantics of `APFloat`, so delegate to the LLVM hashing framework
// here. We re-hash the result to mix in our seed. All of this is a bit
// inefficient, and we can revisit this to provide a dedicated implementation
// if it becomes a bottleneck.
using llvm::hash_value;
hasher.HashRaw(hash_value(value));
return static_cast<HashCode>(hasher);
}
template <typename... Ts>
inline auto CarbonHashValue(const std::tuple<Ts...>& value, uint64_t seed)
-> HashCode {
Hasher hasher(seed);
std::apply([&](const auto&... args) { hasher.Hash(args...); }, value);
return static_cast<HashCode>(hasher);
}
template <typename T, typename U>
inline auto CarbonHashValue(const std::pair<T, U>& value, uint64_t seed)
-> HashCode {
Hasher hasher(seed);
hasher.Hash(value.first, value.second);
return static_cast<HashCode>(hasher);
}
// Implementation detail predicate to detect if there is a `CarbonHashValue`
// overload available for a particular type, either in this namespace or found
// via ADL. Note that this should not be moved above any overloads.
template <typename T>
concept HasCarbonHashValue = requires(const T& value, uint64_t seed) {
{ CarbonHashValue(value, seed) } -> std::same_as<HashCode>;
};
// C++ guarantees this is true for the unsigned variants, but we require it for
// signed variants and pointers.
static_assert(std::has_unique_object_representations_v<int8_t>);
static_assert(std::has_unique_object_representations_v<int16_t>);
static_assert(std::has_unique_object_representations_v<int32_t>);
static_assert(std::has_unique_object_representations_v<int64_t>);
static_assert(std::has_unique_object_representations_v<void*>);
// Overloaded function to provide mappings or conversions required to types that
// should be hashed as plain data but where can't directly examine the storage.
//
// For example, C++ uses `std::nullptr_t` but unfortunately doesn't make it have
// a unique object representation. To address that, we need a function that
// converts `nullptr` back into a `void*` that will have a unique object
// representation. And this needs to be done by-value as we need to build a
// temporary object to return, which requires a separate overload rather than
// just using a type function that could be used in parallel in the predicate
// below. Instead, we build the predicate independently of the mapping overload,
// but together they should produce the correct result.
template <typename T>
inline auto MapToRawDataType(const T& value) -> const T& {
// This overload should never be selected for `std::nullptr_t`, so
// static_assert to get some better compiler error messages.
static_assert(!std::same_as<T, std::nullptr_t>);
// NOLINTNEXTLINE(bugprone-return-const-ref-from-parameter)
return value;
}
inline auto MapToRawDataType(std::nullptr_t /*value*/) -> const void* {
return nullptr;
}
// Implementation detail predicate to detect if we can hash as a raw data type.
// When used, it should be combined with our mapping function `MapToRawDataType`
// to handle any necessary edge cases that don't directly work.
template <typename T>
concept CanHashAsRawDataType = std::same_as<T, std::nullptr_t> ||
std::has_unique_object_representations_v<T>;
// Implementation of the unqualified dispatch to any provided `CarbonHashValue`
// overloads, either here, or via ADL. Note that similar to
// `HasCarbonHashValue`, this must not be moved above any of those overloads.
template <typename T>
inline auto DispatchImpl(const T& value, uint64_t seed) -> HashCode {
// If we have an explicit overload for `CarbonHashValue`, call it. This may be
// provided above or via ADL, and is preferred as it represents an explicit
// request for how the type is hashed.
if constexpr (HasCarbonHashValue<T>) {
return CarbonHashValue(value, seed);
} else if constexpr (CanHashAsRawDataType<T>) {
// There was no explicit overload to call, but the type allows us to hash it
// as raw data, do so.
Hasher hasher(seed);
hasher.HashRaw(MapToRawDataType(value));
return static_cast<HashCode>(hasher);
} else {
// We can only synthesize hashing for types that are hashable as raw data.
// This type isn't so fail a static assert due to the lack of an overload.
// We use the concept here to try and get the best diagnostics we can about
// candidates.
static_assert(HasCarbonHashValue<T>,
"Attempted to hash a type which does not have a "
"`CarbonHashValue` overload.");
}
}
} // namespace InternalHashDispatch
template <typename T>
inline auto HashValue(const T& value, uint64_t seed) -> HashCode {
return InternalHashDispatch::DispatchImpl(value, seed);
}
template <typename T>
inline auto HashValue(const T& value) -> HashCode {
// When a seed isn't provided, use the last 64-bit chunk of random data. Other
// chunks (especially the first) are more often XOR-ed with the seed and risk
// cancelling each other out and feeding a zero to a `Mix` call in a way that
// sharply increasing collisions.
return HashValue(value, Hasher::StaticRandomData[7]);
}
constexpr auto HashCode::ExtractIndex() -> ssize_t { return value_; }
template <int N>
constexpr auto HashCode::ExtractIndexAndTag() -> std::pair<ssize_t, uint32_t> {
static_assert(N >= 1);
static_assert(N < 32);
return {static_cast<ssize_t>(value_ >> N),
static_cast<uint32_t>(value_ & ((1U << N) - 1))};
}
// Building with `-DCARBON_MCA_MARKERS` will enable `llvm-mca` annotations in
// the source code. These can interfere with optimization, but allows analyzing
// the generated `.s` file with the `llvm-mca` tool. Documentation for these
// markers is here:
// https://llvm.org/docs/CommandGuide/llvm-mca.html#using-markers-to-analyze-specific-code-blocks
#if CARBON_MCA_MARKERS
#define CARBON_MCA_BEGIN(NAME) \
__asm volatile("# LLVM-MCA-BEGIN " NAME "" ::: "memory");
#define CARBON_MCA_END(NAME) \
__asm volatile("# LLVM-MCA-END " NAME "" ::: "memory");
#else
#define CARBON_MCA_BEGIN(NAME)
#define CARBON_MCA_END(NAME)
#endif
inline auto Hasher::Read1(const std::byte* data) -> uint64_t {
uint8_t result;
std::memcpy(&result, data, sizeof(result));
return result;
}
inline auto Hasher::Read2(const std::byte* data) -> uint64_t {
uint16_t result;
std::memcpy(&result, data, sizeof(result));
return result;
}
inline auto Hasher::Read4(const std::byte* data) -> uint64_t {
uint32_t result;
std::memcpy(&result, data, sizeof(result));
return result;
}
inline auto Hasher::Read8(const std::byte* data) -> uint64_t {
uint64_t result;
std::memcpy(&result, data, sizeof(result));
return result;
}
inline auto Hasher::Read1To3(const std::byte* data, ssize_t size) -> uint64_t {
// Use carefully crafted indexing to avoid branches on the exact size while
// reading.
uint64_t byte0 = static_cast<uint8_t>(data[0]);
uint64_t byte1 = static_cast<uint8_t>(data[size - 1]);
uint64_t byte2 = static_cast<uint8_t>(data[size >> 1]);
return byte0 | (byte1 << 16) | (byte2 << 8);
}
inline auto Hasher::Read4To8(const std::byte* data, ssize_t size) -> uint64_t {
uint32_t low;
std::memcpy(&low, data, sizeof(low));
uint32_t high;
std::memcpy(&high, data + size - sizeof(high), sizeof(high));
return low | (static_cast<uint64_t>(high) << 32);
}
inline auto Hasher::Read8To16(const std::byte* data, ssize_t size)
-> std::pair<uint64_t, uint64_t> {
uint64_t low;
std::memcpy(&low, data, sizeof(low));
uint64_t high;
std::memcpy(&high, data + size - sizeof(high), sizeof(high));
return {low, high};
}
inline auto Hasher::Mix(uint64_t lhs, uint64_t rhs) -> uint64_t {
// Use the C23 extended integer support that Clang provides as a general
// language extension.
using U128 = unsigned _BitInt(128);
U128 result = static_cast<U128>(lhs) * static_cast<U128>(rhs);
return static_cast<uint64_t>(result) ^ static_cast<uint64_t>(result >> 64);
}
inline auto Hasher::WeakMix(uint64_t value) -> uint64_t {
value *= MulConstant;
#ifdef __ARM_ACLE
// Arm has a fast bit-reversal that gives us the optimal distribution.
value = __rbitll(value);
#else
// Otherwise, assume an optimized BSWAP such as x86's. That's close enough.
value = __builtin_bswap64(value);
#endif
return value;
}
inline auto Hasher::HashDense(uint64_t data) -> void {
// When hashing exactly one 64-bit entity use the Phi-derived constant as this
// is just multiplicative hashing. The initial buffer is mixed on input to
// pipeline with materializing the constant.
buffer = Mix(data ^ buffer, MulConstant);
}
inline auto Hasher::HashDense(uint64_t data0, uint64_t data1) -> void {
// When hashing two chunks of data at the same time, we XOR it with random
// data to avoid common inputs from having especially bad multiplicative
// effects. We also XOR in the starting buffer as seed or to chain. Note that
// we don't use *consecutive* random data 64-bit values to avoid a common
// compiler "optimization" of loading both 64-bit chunks into a 128-bit vector
// and doing the XOR in the vector unit. The latency of extracting the data
// afterward eclipses any benefit. Callers will routinely have two consecutive
// data values here, but using non-consecutive keys avoids any vectorization
// being tempting.
//
// XOR-ing both the incoming state and a random word over the second data is
// done to pipeline with materializing the constants and is observed to have
// better performance than XOR-ing after the mix.
//
// This roughly matches the mix pattern used in the larger mixing routines
// from Abseil, which is a more minimal form than used in other algorithms
// such as AHash and seems adequate for latency-optimized use cases.
buffer =
Mix(data0 ^ StaticRandomData[1], data1 ^ StaticRandomData[3] ^ buffer);
}
template <typename T>
requires std::has_unique_object_representations_v<T> && (sizeof(T) <= 8)
inline auto Hasher::ReadSmall(const T& value) -> uint64_t {
const auto* storage = reinterpret_cast<const std::byte*>(&value);
if constexpr (sizeof(T) == 1) {
return Read1(storage);
} else if constexpr (sizeof(T) == 2) {
return Read2(storage);
} else if constexpr (sizeof(T) == 3) {
return Read2(storage) | (Read1(&storage[2]) << 16);
} else if constexpr (sizeof(T) == 4) {
return Read4(storage);
} else if constexpr (sizeof(T) == 5) {
return Read4(storage) | (Read1(&storage[4]) << 32);
} else if constexpr (sizeof(T) == 6 || sizeof(T) == 7) {
// Use overlapping 4-byte reads for 6 and 7 bytes.
return Read4(storage) | (Read4(&storage[sizeof(T) - 4]) << 32);
} else if constexpr (sizeof(T) == 8) {
return Read8(storage);
} else {
static_assert(sizeof(T) <= 8);
}
}
template <typename... Ts>
inline auto Hasher::Hash(const Ts&... values) -> void {
if constexpr (sizeof...(Ts) == 0) {
buffer ^= StaticRandomData[0];
return;
}
using InternalHashDispatch::CanHashAsRawDataType;
using InternalHashDispatch::HasCarbonHashValue;
using InternalHashDispatch::MapToRawDataType;
// Special-case a single element tuple that we will hash as raw data.
if constexpr (sizeof...(Ts) == 1 && (... && (!HasCarbonHashValue<Ts> &&
CanHashAsRawDataType<Ts>))) {
HashRaw(MapToRawDataType(values)...);
return;
}
// Map each value into a uint64_t, either by hashing it using any custom hash
// function required, reading its data into a 64-bit value, or if large
// hashing it as raw data and using that hash code as the 64-bit data. This
// mirrors the logic in `InternalHashDispatch::DispatchImpl`, but minimizes
// early hashing of anything small we can just read as data. While this may be
// a little bit wasteful in some cases, collapsing down to a flat array of
// 64-bit integers is more efficient to hash.
auto map_value = []<typename T>(const T& value) -> uint64_t {
if constexpr (HasCarbonHashValue<T>) {
// Use the top-level `HashValue` to re-dispatch to the custom
// implementation with a fixed seed.
return static_cast<uint64_t>(HashValue(value));
} else if constexpr (CanHashAsRawDataType<T>) {
auto raw_value = MapToRawDataType(value);
if constexpr (sizeof(raw_value) <= 8) {
return ReadSmall(raw_value);
} else {
// Use the top-level `HashValue` to pick up a good fixed seed and hash
// this large object as raw data.
return static_cast<uint64_t>(HashValue(raw_value));
}
} else {
// We can only synthesize hashing for types that are hashable as raw data.
// This type isn't so fail a static assert due to the lack of an overload.
// We use the concept here to try and get the best diagnostics we can
// about candidates.
static_assert(HasCarbonHashValue<T>,
"Attempted to hash a type which does not have a "
"`CarbonHashValue` overload.");
}
};
const uint64_t data[] = {map_value(values)...};
if constexpr (sizeof...(Ts) == 2) {
HashDense(data[0], data[1]);
return;
}
HashRaw(data);
}
template <typename T>
inline auto Hasher::HashArray(llvm::ArrayRef<T> values) -> void {
using InternalHashDispatch::CanHashAsRawDataType;
using InternalHashDispatch::HasCarbonHashValue;
// This logic similarly mirrors `InternalHashDispatch::DispatchImpl`, but is
// specialized here to allow us to efficiently process the array when it
// *doesn't* require recursive hashing.
if constexpr (HasCarbonHashValue<T>) {
// Use a trivial loop to give consistent behavior for arrays requiring
// recursive hashing. This isn't terribly efficient, but if clients care
// they should specialize the entire hashing operation. For simple, tiny
// cases, this avoids an awkward functionality cliff.
for (const T& value : values) {
HashDense(static_cast<uint64_t>(HashValue(value)));
}
HashRaw(values.size());
} else if constexpr (std::has_unique_object_representations_v<T>) {
// This code is a narrow special case for `CanHashAsRawDataType` that we can
// further hash the underlying storage directly. We check that it is a
// subset.
static_assert(CanHashAsRawDataType<T>);
HashSizedBytes(values);
} else {
// We can only synthesize hashing for types that are hashable as raw data.
// This type isn't so fail a static assert due to the lack of an overload.
// We use the concept here to try and get the best diagnostics we can
// about candidates.
static_assert(HasCarbonHashValue<T>,
"Attempted to hash a type which does not have a "
"`CarbonHashValue` overload.");
}
}
template <typename T>
requires std::has_unique_object_representations_v<T>
inline auto Hasher::HashRaw(const T& value) -> void {
if constexpr (sizeof(T) <= 8) {
// For types size 8-bytes and smaller directly being hashed (as opposed to
// 8-bytes potentially bit-packed with data), we rarely expect the incoming
// data to fully and densely populate all 8 bytes. For these cases we have a
// `WeakMix` routine that is lower latency but lower quality.
CARBON_MCA_BEGIN("fixed-8b");
buffer = WeakMix(buffer ^ ReadSmall(value));
CARBON_MCA_END("fixed-8b");
return;
}
const auto* data_ptr = reinterpret_cast<const std::byte*>(&value);
if constexpr (8 < sizeof(T) && sizeof(T) <= 16) {
CARBON_MCA_BEGIN("fixed-16b");
auto values = Read8To16(data_ptr, sizeof(T));
HashDense(values.first, values.second);
CARBON_MCA_END("fixed-16b");
return;
}
if constexpr (16 < sizeof(T) && sizeof(T) <= 32) {
CARBON_MCA_BEGIN("fixed-32b");
// Essentially the same technique used for dynamically sized byte sequences
// of this size, but we start with a fixed XOR of random data.
buffer ^= StaticRandomData[0];
uint64_t m0 = Mix(Read8(data_ptr) ^ StaticRandomData[1],
Read8(data_ptr + 8) ^ buffer);
const std::byte* tail_16b_ptr = data_ptr + (sizeof(T) - 16);
uint64_t m1 = Mix(Read8(tail_16b_ptr) ^ StaticRandomData[3],
Read8(tail_16b_ptr + 8) ^ buffer);
buffer = m0 ^ m1;
CARBON_MCA_END("fixed-32b");
return;
}
// Hashing the size isn't relevant here, but is harmless, so fall back to a
// common code path.
HashSizedBytesLarge(llvm::ArrayRef<std::byte>(data_ptr, sizeof(T)));
}
inline auto Hasher::HashSizedBytes(llvm::ArrayRef<std::byte> bytes) -> void {
const std::byte* data_ptr = bytes.data();
const ssize_t size = bytes.size();
// First handle short sequences under 8 bytes. We distribute the branches a
// bit for short strings.
if (size <= 8) {
if (size >= 4) {
CARBON_MCA_BEGIN("dynamic-8b");
uint64_t data = Read4To8(data_ptr, size);
// We optimize for latency on short strings by hashing both the data and
// size in a single multiply here, using the small nature of size to
// sample a specific sequence of bytes with well distributed bits into one
// side of the multiply. This results in a *statistically* weak hash
// function, but one with very low latency.
//
// Note that we don't drop to the `WeakMix` routine here because we want
// to use sampled random data to encode the size, which may not be as
// effective without the full 128-bit folded result.
buffer = Mix(data ^ buffer, SampleRandomData(size));
CARBON_MCA_END("dynamic-8b");
return;
}
// When we only have 0-3 bytes of string, we can avoid the cost of `Mix`.
// Instead, for empty strings we can just XOR some of our data against the
// existing buffer. For 1-3 byte lengths we do 3 one-byte reads adjusted to
// always read in-bounds without branching. Then we OR the size into the 4th
// byte and use `WeakMix`.
CARBON_MCA_BEGIN("dynamic-4b");
if (size == 0) {
buffer ^= StaticRandomData[0];
} else {
uint64_t data = Read1To3(data_ptr, size) | size << 24;
buffer = WeakMix(data);
}
CARBON_MCA_END("dynamic-4b");
return;
}
if (size <= 16) {
CARBON_MCA_BEGIN("dynamic-16b");
// Similar to the above, we optimize primarily for latency here and spread
// the incoming data across both ends of the multiply. Note that this does
// have a drawback -- any time one half of the mix function becomes zero it
// will fail to incorporate any bits from the other half. However, there is
// exactly 1 in 2^64 values for each side that achieve this, and only when
// the size is exactly 16 -- for smaller sizes there is an overlapping byte
// that makes this impossible unless the seed is *also* incredibly unlucky.
//
// Because this hash function makes no attempt to defend against hash
// flooding, we accept this risk in order to keep the latency low. If this
// becomes a non-flooding problem, we can restrict the size to <16 and send
// the 16-byte case down the next tier of cost.
uint64_t size_hash = SampleRandomData(size);
auto data = Read8To16(data_ptr, size);
buffer = Mix(data.first ^ size_hash, data.second ^ buffer);
CARBON_MCA_END("dynamic-16b");
return;
}
if (size <= 32) {
CARBON_MCA_BEGIN("dynamic-32b");
// Do two mixes of overlapping 16-byte ranges in parallel to minimize
// latency. We also incorporate the size by sampling random data into the
// seed before both.
buffer ^= SampleRandomData(size);