Skip to content

Latest commit

 

History

History
868 lines (650 loc) · 25.2 KB

README.md

File metadata and controls

868 lines (650 loc) · 25.2 KB

Neural Network from scratch in Python

Index

1. Introduction

In this example, we will build a neural network that can identify a polynomial from a point in the plane.

For example, if there are two polynomials:

p1(x) = -x^2 + 1
p2(x) = x^3 - 2

If the input is (0, 1), the output would be p1, since p1(0) = 1.

2. Polynomial Class

class P:
    # Create the polynomial with the given coefficients
    def __init__(self, *coeffs):
        self.coeffs = coeffs

    # Get the value of the polynomial with a given x
    def p(self, x):
        return sum(coef*(x**(len(self.coeffs)-1-exp)) for exp,coef in enumerate(self.coeffs))

    # Show the polynomial
    def __str__(self):
        toret = ""
        max_exp = len(self.coeffs) - 1
        for exp,coef in enumerate(self.coeffs):
            exp = max_exp - exp
            if coef != 0:
                var = "x" if exp != 0 else ""
                sp = " " if exp != max_exp else ""
                coef = f"{sp}{'-' if coef < 0 else '+' if exp != max_exp else ''}{sp}{abs(coef) if abs(coef) != 1 or exp == 0 else ''}"
                exp = f"^{exp}" if exp > 1 else ""
                toret += f"{coef}{var}{exp}"
        return toret

Example

p1 = P(-1,0,1)
print(p1)       #>> -x^2 + 1
print(p1.p(2))  #>> -3

3. Create the sample dataset / input data

Function

Argument  Description Example
n_samples  The number of samples for each class. 100
pols List of polynomial to generate the samples. [P(3,1), P(8,0,-2)]
import numpy as np; np.random.seed(0)

# Polynomials to use in the neural network
pols = (P(3, 1), P(-2, -3), P(4, -1, -2), P(-1, 2, 0), P(3, 0, 2), P(1, -1, 3, 2), P(-3, 1, 0, 0), 
P(2, 0, 1, -2), P(5, -3, 1, -2, 2), P(-2, -3, 0, 4, 1), P(1, 0, -4, 2, 3), P(1, 0, 0, 0, -2))

# Generates a dataset with the chosen Polynomials
def generate_dataset(n_samples, pols=pols):
    X = np.zeros((n_samples*len(pols), 2))
    y = np.zeros(n_samples*len(pols), dtype='uint8')
    for i,pol in enumerate(pols):
        for j in range(n_samples):
            r = np.random.uniform(-1, 1)
            X[i*n_samples+j] = [r, pol.p(r)]
            y[i*n_samples+j] = i
    return X, y

Example

X, y = generate_dataset(100, pols)

Generated samples (X)

The integer labels for each sample is a matrix of n_samples x n_features (100x2).

  • n_samples : 100
  • n_features : 2 (x and y)
[[ 0.77118056  3.31354169]
 [ 0.16839427  1.50518282]
 ...
 [-0.85168746 -1.47383613]
 [-0.22573398 -1.9974035 ]]

Integer labels for each sample (y)

The integer labels for each sample is a matrix of n_samples x n_outputs (100x1).

  • n_samples : 100
  • n_outputs : 1 (There are 12 different possible outputs, since there are 12 polynomials)
[ 0  0  0 ... 11 11 11]

4. Plot the dataset

def plot_dataset(X, y, title='Dataset'):
    plt.figure(figsize=(10, 5))
    plt.title(title)
    plt.xlabel('x')
    plt.ylabel('y')
    plt.grid()
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap='tab10')
    plt.show()

Result

5. Create the Dense Layer

What is a Dense Layer?

A dense layer is a layer that is deeply connected with its preceding layer (each neuron receives input from all the neurons in the preceding layer).

Class

__init__ (Initialize the weights and bias)

Argument  Description Example
n_inputs  Number of inputs. 2 (x and y)
n_neurons  Number of neurons used  12 (n_neurons >= n_outputs)

forward (Forward propagation)

Argument  Description Example
inputs The inputs to the layer. X
class Dense_Layer:
    # Initialize the weights and bias
    def __init__(self, n_inputs, n_neurons):
        # Random (with standard normal distribution) initial weights. Multiplied by 0.1 to have small values
        self.weights = 0.1 * np.random.randn(n_inputs, n_neurons)

        # Initial biases with a value of 0
        self.biases = np.zeros((1, n_neurons))

    # Forward propagation (generate the outputs)
    def forward(self, inputs):
        # Multiply the inputs by the weights and add the biases
        self.output = np.dot(inputs, self.weights) + self.biases

Example

# Create a dense layer with 2 inputs and 12 neurons
layer1 = Dense_Layer(n_inputs=2, n_neurons=12)

# Generate the output of the layer by multiplying the inputs by the weights and adding the biases
layer1.forward(X)

Layer 1 weights

The random weights are a matrix of n_inputs x n_neurons (2x12).

[[ 0.03528166 -0.01527744 -0.12986867  0.12760753  0.13250141  0.02053326
   0.0045134   0.23396248 -0.02764328 -0.0259577   0.03644812  0.1471322 ]
 [ 0.15927708 -0.02585726  0.03083312 -0.13780835 -0.03119761 -0.08402904
  -0.10068318  0.16815767 -0.07922867 -0.05316059  0.03658488  0.12978253]]

Layer 1 biases

The biases are a matrix of 1 x n_neurons (1x12).

[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

Layer 1 output

The output of the layer is a matrix of n_samples x n_neurons (100x12).

[[ 0.20937075 -0.03492186  0.02718487 ... -0.07126449  0.05085822 0.18215744]
 [ 0.38010995 -0.0658176   0.01475017 ... -0.1329698   0.09950744 0.36067201]
 ...
 [-0.32540249  0.0547511  -0.03543965 ...  0.11146536 -0.08045569 -0.28900613]]

6. Rectified Linear Activation Function (ReLU)

The ReLU is used to transform the outputs of the previous layer into a non-negative output.

It leaves the positive inputs unchanged and transforms the negative inputs into zeros.

Arguments

forward (Forward propagation)

Argument  Description Example
inputs  The inputs to be transformed. layer1.output

Class

class Activation_ReLU:
    # Forward propagation
    def forward(self, inputs):
        self.output = np.maximum(0, inputs)

Example

# Create a ReLU activation function
act1 = Activation_ReLU()

# Change the layer1 output with the activation function
act1.forward(layer1.output)

Layer 1 output (before ReLU)

The output of the layer is a matrix of n_samples x n_neurons (100x12).

[[ 0.20937075 -0.03492186  0.02718487 ... -0.07126449  0.05085822 0.18215744]
 [ 0.38010995 -0.0658176   0.01475017 ... -0.1329698   0.09950744 0.36067201]
 ...
 [-0.32540249  0.0547511  -0.03543965 ...  0.11146536 -0.08045569 -0.28900613]]

Layer 1 output (after ReLU)

The output of the layer is a matrix of n_samples x n_neurons (100x12).

[[0.20937075 0.         0.02718487 ... 0.         0.05085822 0.18215744]
 [0.38010995 0.         0.01475017 ... 0.         0.09950744 0.36067201]
 ...
 [0.         0.0547511  0.         ... 0.11146536 0.         0.        ]]

7. Softmax Activation Function

The Softmax activation function is used to transform the outputs of the previous layer into a probability distribution.

Arguments

forward (Forward propagation)

 Argument   Description   Example 
inputs  The inputs to be transformed. layer2.output

Class

class Activation_Softmax: # Softmax Activation Function
    # Forward propagation
    def forward(self, inputs):
        # The max of the inputs is substracted from the inputs to avoid overflow. e**exp would be overflow with exp=1000, but by substracting the max, exp <= 0 and the values will be between 0 and 1)
        exp_values = np.exp(inputs - np.max(inputs, axis=1, keepdims=True))     # keepdims=True to keep the shape of the array
        probabilities = exp_values / np.sum(exp_values, axis=1, keepdims=True)  # Normalize the probabilities
        self.output = probabilities

Example

# Create a new Dense Layer with 12 inputs (the ReLU output) and 12 neurons
layer2 = layer(n_inputs=12, n_neurons=12)

# Generate the outputs using the act1.output as inputs
layer2.forward(act1.output)

# Create a Softmax activation function
act2 = Activation_Softmax()

# Change the layer2 output with the activation function
act2.forward(layer2.output)

Layer 2 weights

The random weights are a matrix of n_inputs x n_neurons (12x12).

[[ 0.04811151  0.27593551 -0.0074668   0.02587164  0.02756007  0.14350494
   0.0507239  -0.01162297 -0.09474886  0.02444435  0.14013448 -0.04103818]
 ...
 [ 0.00875315  0.09387469  0.06071117 -0.10481704 -0.08602625  0.03283013
  -0.04012978 -0.03166553  0.05969065 -0.09872867 -0.04012347 -0.08000825]]

Layer 2 biases

The biases are a matrix of 1 x n_neurons (1x12).

[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

Layer 2 output (before Softmax)

The output of the layer is a matrix of n_samples x n_neurons (100x12).

[[-0.01228636  0.0526258   0.03871606 ...  0.00462124  0.04428541 -0.01437666]
 [-0.0271324   0.08745892  0.07535303 ...  0.01077147  0.08546539 -0.02271744]
 ...
 [-0.023293   -0.06307724  0.04470089 ...  0.00960348  0.07367412 -0.02288441]]

Layer 2 output (after Softmax)

The output of the layer is a matrix of n_samples x n_neurons (100x12).

[[0.08163237 0.08710707 0.08590382 ... 0.08302431 0.08638358 0.08146191]
 [0.07999438 0.0897069  0.08862746 ... 0.08308467 0.08952824 0.08034833]
 ...
 [0.08068105 0.07753423 0.08635767 ... 0.08337931 0.08889633 0.08071402]]

8. Categorical Cross-Entropy Loss function

The Categorical Cross-Entropy Loss function is used to calculate the loss between the predicted probabilities and the true labels.

Arguments

forward (Forward propagation)

Argument  Description Example
y_pred  The calculated predictions. act2.output
y_true  The true labels. y

Class

class Loss: # Loss function
    def calculate(self, output, y):
        sample_losses = self.forward(output, y)
        data_loss = np.mean(sample_losses)
        return data_loss

class Loss_CategoricalCrossentropy(Loss): # Inherits from Loss class
    def forward(self, y_pred, y_true):
        samples = len(y_pred)
        y_pred_clipped = np.clip(y_pred, 1e-7, 1-1e-7) # To avoid log(0)

        if len(y_true.shape) == 1: # If the passed values are scalar. 1D array with the correct classes
            correct_confidences = y_pred_clipped[range(samples), y_true]
        elif len(y_true.shape) == 2: # If the passed values are one-hot encoded vectors. 2D array with vectors containing 0s and a 1, the 1 being the correct (one-hot encoding).
            correct_confidences = np.sum(y_pred_clipped * y_true, axis=1)

        negative_log_likelihoods = -np.log(correct_confidences)
        return negative_log_likelihoods

Example

# Create a Loss_CategoricalCrossentropy object
loss_function = Loss_CategoricalCrossentropy()

# Calculate the loss with the loss_function.calculate method
loss = loss_function.calculate(act2.output, y)

Loss output

2.4942046014713335

9. Prediction

Polynomial which is the most likely to be the correct one for each input

predictions = np.argmax(act2.output, axis=1)
[ 1  1  1 ... 10  4 10]

10. Accuracy

Accuracy of the previous prediction.

It will be low since the model has not been trained yet.

accuracy = np.mean(predictions == y)
0.015833333333333335

11. All together

pols = (P(3, 1), P(-2, -3), P(4, -1, -2), P(-1, 2, 0), P(3, 0, 2), P(1, -1, 3, 2), P(-3, 1, 0, 0), 
P(2, 0, 1, -2), P(5, -3, 1, -2, 2), P(-2, -3, 0, 4, 1), P(1, 0, -4, 2, 3), P(1, 0, 0, 0, -2))

n_classes = len(pols)

X, y = generate_dataset(100, pols)

layer1 = Dense_Layer(n_inputs= 2, n_neurons = n_classes)
layer1.forward(X)

act1 = Activation_ReLU()
act1.forward(layer1.output)

layer2 = Dense_Layer(n_inputs=12, n_neurons=12)
layer2.forward(act1.output)

act2 = Activation_Softmax()
act2.forward(layer2.output)

loss_function = Loss_CategoricalCrossentropy()
loss = loss_function.calculate(act2.output, y)

predictions = np.argmax(act2.output, axis=1)

accuracy = np.mean(predictions == y)

12. Complete Neural Network

Imports

import numpy as np;
import matplotlib.pyplot as plt
import os
from Activation_Funcs import *
from Dense_Layer import *
from Loss import *
from Polynomial import P

Polynomials to be used

pols = (P(3, 1), P(-2, -3), P(4, -1, -2), P(-1, 2, 0), P(3, 0, 2), P(1, -1, 3, 2), P(-3, 1, 0, 0), 
P(2, 0, 1, -2), P(5, -3, 1, -2, 2), P(-2, -3, 0, 4, 1), P(1, 0, -4, 2, 3), P(1, 0, 0, 0, -2))

Plot the polynomials

def plot_polynomials(pols, ran=(-2,2), n_samples=100):
    # 100 linearly spaced numbers
    x = np.linspace(ran[0],ran[1],n_samples)

    # setting the axes at the centre
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.spines['left'].set_position('center')
    ax.spines['bottom'].set_position('center')
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    ax.xaxis.set_ticks_position('bottom')
    ax.yaxis.set_ticks_position('left')

    # plot the functions
    for pol in pols:
        y = pol.p(x)
        plt.plot(x, y, label=str(pol))

    plt.legend(loc='upper left')

    # show the plot
    plt.show()
# Example
plot_polynomials(
    pols=(P(1,0,1), P(-2, 3)),
    ran=(-1,1),
    n_samples=100
)

Train the neural network

def train(n_samples=100, n_epochs=100000, learn_rate=0.0005, pols=pols):
    n_classes = len(pols)

    X, y = generate_dataset(n_samples, pols)
    # plot_dataset(X, y)

    layer1 = Dense_Layer(n_inputs= 2,        n_neurons = n_classes)
    layer2 = Dense_Layer(n_inputs=n_classes, n_neurons = n_classes)
    act1 = Activation_ReLU()
    act2 = Activation_Softmax()
    loss_func = Loss_CategoricalCrossentropy()

    lowest_loss = np.inf
    b_weights_l1 = layer1.weights.copy()
    b_biases_l1  = layer1.biases.copy()
    b_weights_l2 = layer2.weights.copy()
    b_biases_l2  = layer2.biases.copy()

    for iter in range(n_epochs):
        # Randomize weights and biases
        layer1.weights +=   learn_rate * np.random.randn(layer1.weights.shape[0], layer1.weights.shape[1])
        layer1.biases +=    learn_rate * np.random.randn(layer1.biases.shape[0], layer1.biases.shape[1])
        layer2.weights +=   learn_rate * np.random.randn(layer2.weights.shape[0], layer2.weights.shape[1])
        layer2.biases +=    learn_rate * np.random.randn(layer2.biases.shape[0], layer2.biases.shape[1])

        # Forward propagation
        layer1.forward(X)
        act1.forward(layer1.output)
        layer2.forward(act1.output)
        act2.forward(layer2.output)

        # Calculate loss
        loss = loss_func.calculate(act2.output, y)

        # Results. If [0 0 1 0 0] it will return 2. argmax returns the index of the maximum value in each array
        predictions = np.argmax(act2.output, axis=1)

        # Accuracy of the results compared to the true values
        accuracy = np.mean(predictions == y)
        
        if loss < lowest_loss:
            print(f"New set of weights and biases found, iter: {iter}, loss: {loss}, acc: {accuracy}")
            lowest_loss = loss
            b_weights_l1 = layer1.weights.copy()
            b_biases_l1 = layer1.biases.copy()
            b_weights_l2 = layer2.weights.copy()
            b_biases_l2 = layer2.biases.copy()
        else:
            layer1.weights = b_weights_l1.copy()
            layer1.biases = b_biases_l1.copy()
            layer2.weights = b_weights_l2.copy()
            layer2.biases = b_biases_l2.copy()

    save_best(layer1, layer2, loss, accuracy)

Example

train(
    n_samples=100, 
    n_epochs=1000000, 
    learn_rate=0.0005,
    pols=pols
)
# Training...
New set of weights and biases found, iter: 0, loss: 2.4899427650572044, acc: 0.11333333333333333
New set of weights and biases found, iter: 3, loss: 2.489925294343727, acc: 0.11083333333333334
New set of weights and biases found, iter: 5, loss: 2.4899040051678587, acc: 0.0975
New set of weights and biases found, iter: 6, loss: 2.4897983233720917, acc: 0.10833333333333334
...
New set of weights and biases found, iter: 998633, loss: 0.8934836266737981, acc: 0.64
New set of weights and biases found, iter: 998652, loss: 0.8934751585906433, acc: 0.6416666666666667
New set of weights and biases found, iter: 998792, loss: 0.8934622116619763, acc: 0.6391666666666667
New set of weights and biases found, iter: 998841, loss: 0.8934603025209412, acc: 0.6416666666666667
...
New best loss: 0.6669996962075785, accuracy: 77.83%

Save the best weights and biases

def save_best(layer1, layer2, loss, accuracy):
    if not os.path.exists('w&b'):
        os.makedirs('w&b')
    if not os.path.exists('w&b/loss.npy') or loss < np.load('w&b/loss.npy'):
        np.save('w&b/weights_l1.npy', layer1.weights)
        np.save('w&b/biases_l1.npy', layer1.biases)
        np.save('w&b/weights_l2.npy', layer2.weights)
        np.save('w&b/biases_l2.npy', layer2.biases)
        np.save('w&b/loss.npy', loss)
        np.save('w&b/accuracy.npy', accuracy)
        print(f"\nNew best loss: {loss}, accuracy: {accuracy*100:.2f}%")

Test the neural network

def test(x,y):
    input = [x, y]
    layer1 = Dense_Layer(n_inputs = 2,  n_neurons = 10)
    layer2 = Dense_Layer(n_inputs = 10, n_neurons = 10)
    act1 = Activation_ReLU()
    act2 = Activation_Softmax()

    layer1.weights = np.load('w&b/weights_l1.npy')
    layer1.biases  = np.load('w&b/biases_l1.npy')
    layer2.weights = np.load('w&b/weights_l2.npy')
    layer2.biases  = np.load('w&b/biases_l2.npy')
    loss = np.load('w&b/loss.npy')

    layer1.forward(input)
    act1.forward(layer1.output)
    layer2.forward(act1.output)
    act2.forward(layer2.output)

    print(f"Overall loss: {loss}")

    predictions = act2.output[0].argsort()[::-1]
    print(f"Sorted predictions: {predictions}")

    prediction = predictions[0]
    odds = act2.output[0][prediction]
    return f"\nPolynomial {prediction} ({odds*100:.2f}%)\n"

Example

print(
    test(-0.55, pols[9].p(-0.55))
)
Overall loss: 0.6669996962075785
Overall accuracy: 77.83%
Sorted predictions: [ 9  2  0 10 11  3  5  1  4  7  6  8]

Polynomial 9 (65.92%)

13. Full Script

Link to the script -> neural-net.py

import numpy as np;
import matplotlib.pyplot as plt
import os
from Activation_Funcs import *
from Dense_Layer import *
from Loss import *
from Polynomial import P

#------------------------------------------------------------------------------
# Polynomials
pols = (P(3, 1), P(-2, -3), P(4, -1, -2), P(-1, 2, 0), P(3, 0, 2), P(1, -1, 3, 2), P(-3, 1, 0, 0), 
P(2, 0, 1, -2), P(5, -3, 1, -2, 2), P(-2, -3, 0, 4, 1), P(1, 0, -4, 2, 3), P(1, 0, 0, 0, -2))

#------------------------------------------------------------------------------
# Generates a dataset with the chosen Polynomials
def generate_dataset(n_samples, pols=pols):
    X = np.zeros((n_samples*len(pols), 2))
    y = np.zeros(n_samples*len(pols), dtype='uint8')
    for i,pol in enumerate(pols):
        for j in range(n_samples):
            r = np.random.uniform(-1, 1)
            X[i*n_samples+j] = [r, pol.p(r)]
            y[i*n_samples+j] = i
    return X, y

#------------------------------------------------------------------------------

def plot_dataset(X, y, title='Dataset'):
    plt.figure(figsize=(10, 5))
    plt.title(title)
    plt.xlabel('x')
    plt.ylabel('y')
    plt.grid()
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap='tab10')
    plt.show()

#------------------------------------------------------------------------------

def plot_polynomials(pols, ran=(-2,2), n_samples=100):
    # 100 linearly spaced numbers
    x = np.linspace(ran[0],ran[1],n_samples)

    # setting the axes at the centre
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.spines['left'].set_position('center')
    ax.spines['bottom'].set_position('center')
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    ax.xaxis.set_ticks_position('bottom')
    ax.yaxis.set_ticks_position('left')

    # plot the functions
    for pol in pols:
        y = pol.p(x)
        plt.plot(x, y, label=str(pol))

    plt.legend(loc='upper left')

    # show the plot
    plt.show()

#-----------------------------------------------------------------------------------

def save_best(layer1, layer2, loss, accuracy):
    if not os.path.exists('w&b'):
        os.makedirs('w&b')
    if not os.path.exists('w&b/loss.npy') or loss < np.load('w&b/loss.npy'):
        np.save('w&b/weights_l1.npy', layer1.weights)
        np.save('w&b/biases_l1.npy', layer1.biases)
        np.save('w&b/weights_l2.npy', layer2.weights)
        np.save('w&b/biases_l2.npy', layer2.biases)
        np.save('w&b/loss.npy', loss)
        np.save('w&b/accuracy.npy', accuracy)
        print(f"\nNew best loss: {loss}, accuracy: {accuracy*100:.2f}%")

#-----------------------------------------------------------------------------------

def train(n_samples=100, n_epochs=100000, learn_rate=0.0005, pols=pols):
    n_classes = len(pols)

    X, y = generate_dataset(n_samples, pols)
    # plot_dataset(X, y)

    layer1 = Dense_Layer(n_inputs= 2,        n_neurons = n_classes)
    layer2 = Dense_Layer(n_inputs=n_classes, n_neurons = n_classes)
    act1 = Activation_ReLU()
    act2 = Activation_Softmax()
    loss_func = Loss_CategoricalCrossentropy()

    lowest_loss = np.inf
    b_weights_l1 = layer1.weights.copy()
    b_biases_l1  = layer1.biases.copy()
    b_weights_l2 = layer2.weights.copy()
    b_biases_l2  = layer2.biases.copy()

    for iter in range(n_epochs):
        # Randomize weights and biases
        layer1.weights +=   learn_rate * np.random.randn(layer1.weights.shape[0], layer1.weights.shape[1])
        layer1.biases +=    learn_rate * np.random.randn(layer1.biases.shape[0], layer1.biases.shape[1])
        layer2.weights +=   learn_rate * np.random.randn(layer2.weights.shape[0], layer2.weights.shape[1])
        layer2.biases +=    learn_rate * np.random.randn(layer2.biases.shape[0], layer2.biases.shape[1])

        # Forward propagation
        layer1.forward(X)
        act1.forward(layer1.output)
        layer2.forward(act1.output)
        act2.forward(layer2.output)

        # Calculate loss
        loss = loss_func.calculate(act2.output, y)

        # Results. If [0 0 1 0 0] it will return 2. argmax returns the index of the maximum value in each array
        predictions = np.argmax(act2.output, axis=1)

        # Accuracy of the results compared to the true values
        accuracy = np.mean(predictions == y)
        
        if loss < lowest_loss:
            print(f"New set of weights and biases found, iter: {iter}, loss: {loss}, acc: {accuracy}")
            lowest_loss = loss
            b_weights_l1 = layer1.weights.copy()
            b_biases_l1 = layer1.biases.copy()
            b_weights_l2 = layer2.weights.copy()
            b_biases_l2 = layer2.biases.copy()
        else:
            layer1.weights = b_weights_l1.copy()
            layer1.biases = b_biases_l1.copy()
            layer2.weights = b_weights_l2.copy()
            layer2.biases = b_biases_l2.copy()

    save_best(layer1, layer2, loss, accuracy)

#-----------------------------------------------------------------------------------

# Check if the network works
def test(x,y):
    input = [x, y]
    layer1 = Dense_Layer(n_inputs = 2,  n_neurons = 10)
    layer2 = Dense_Layer(n_inputs = 10, n_neurons = 10)
    act1 = Activation_ReLU()
    act2 = Activation_Softmax()

    layer1.weights = np.load('w&b/weights_l1.npy')
    layer1.biases  = np.load('w&b/biases_l1.npy')
    layer2.weights = np.load('w&b/weights_l2.npy')
    layer2.biases  = np.load('w&b/biases_l2.npy')
    loss = np.load('w&b/loss.npy')
    accuracy = np.load('w&b/accuracy.npy')

    layer1.forward(input)
    act1.forward(layer1.output)
    layer2.forward(act1.output)
    act2.forward(layer2.output)

    print(f"Overall loss: {loss}")
    print(f"Overall accuracy: {accuracy*100:.2f}%")

    predictions = act2.output[0].argsort()[::-1]
    print(f"Sorted predictions: {predictions}")

    prediction = predictions[0]
    odds = act2.output[0][prediction]
    return f"\nPolynomial {prediction} ({odds*100:.2f}%)\n"

#-----------------------------------------------------------------------------------
"""
train(
    n_samples=100, 
    n_epochs=10000, 
    learn_rate=0.0005,
    pols=pols
)
"""
print(
    test(-0.55, pols[9].p(-0.55))
)