forked from midas-journal/midas-journal-784
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDicomSeriesReadNiftiImageWrite.cxx
executable file
·383 lines (297 loc) · 12.3 KB
/
DicomSeriesReadNiftiImageWrite.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: DicomSeriesReadNiftiImageWrite.cxx
Language: C++
Date: Date: 2010/12/13
Version: 1.0
Author: Jian Wu (eewujian@hotmail.com)
Univerisity of Florida
Virginia Commonwealth University
This program read a DICOM series into a volume and then save this volume in NIFTI
file format.
This program was modified from the ITK example--DicomSeriesReadSeriesWrite.cxx
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#ifdef __BORLANDC__
#define ITK_LEAN_AND_MEAN
#endif
// Software Guide : BeginLatex
//
// Probably the most common representation of datasets in clinical
// applications is the one that uses sets of DICOM slices in order to compose
// tridimensional images. This is the case for CT, MRI and PET scanners. It is
// very common therefore for image analysts to have to process volumetric
// images that are stored in the form of a set of DICOM files belonging to a
// common DICOM series.
//
// The following example illustrates how to use ITK functionalities in order
// to read a DICOM series into a volume and then save this volume in NIFTI
// file format.
//
// The example begins by including the appropriate headers. In particular we
// will need the \doxygen{GDCMImageIO} object in order to have access to the
// capabilities of the GDCM library for reading DICOM files, and the
// \doxygen{GDCMSeriesFileNames} object for generating the lists of filenames
// identifying the slices of a common volumetric dataset.
//
// \index{itk::ImageSeriesReader!header}
// \index{itk::GDCMImageIO!header}
// \index{itk::GDCMSeriesFileNames!header}
// \index{itk::ImageFileWriter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkGDCMImageIO.h"
#include "itkGDCMSeriesFileNames.h"
#include "itkImageSeriesReader.h"
#include "itkImageFileWriter.h"
#include "itkNiftiImageIO.h"
// Software Guide : EndCodeSnippet
int main( int argc, char* argv[] )
{
if( argc < 3 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " DicomDirectory outputFileName [seriesName]"
<< std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We define the pixel type and dimension of the image to be read. In this
// particular case, the dimensionality of the image is 3, and we assume a
// \code{signed short} pixel type that is commonly used for X-Rays CT scanners.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef signed short PixelType;
const unsigned int Dimension = 3;
typedef itk::Image< PixelType, Dimension > ImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We use the image type for instantiating the type of the series reader and
// for constructing one object of its type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageSeriesReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// A GDCMImageIO object is created and connected to the reader. This object is
// the one that is aware of the internal intricacies of the DICOM format.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::GDCMImageIO ImageIOType;
ImageIOType::Pointer dicomIO = ImageIOType::New();
reader->SetImageIO( dicomIO );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now we face one of the main challenges of the process of reading a DICOM
// series. That is, to identify from a given directory the set of filenames
// that belong together to the same volumetric image. Fortunately for us, GDCM
// offers functionalities for solving this problem and we just need to invoke
// those functionalities through an ITK class that encapsulates a communication
// with GDCM classes. This ITK object is the GDCMSeriesFileNames. Conveniently
// for us, we only need to pass to this class the name of the directory where
// the DICOM slices are stored. This is done with the \code{SetDirectory()}
// method. The GDCMSeriesFileNames object will explore the directory and will
// generate a sequence of filenames for DICOM files for one study/series.
// In this example, we also call the \code{SetUseSeriesDetails(true)} function
// that tells the GDCMSereiesFileNames object to use additional DICOM
// information to distinguish unique volumes within the directory. This is
// useful, for example, if a DICOM device assigns the same SeriesID to
// a scout scan and its 3D volume; by using additional DICOM information
// the scout scan will not be included as part of the 3D volume. Note that
// \code{SetUseSeriesDetails(true)} must be called prior to calling
// \code{SetDirectory()}. By default \code{SetUseSeriesDetails(true)} will use
// the following DICOM tags to sub-refine a set of files into multiple series:
// * 0020 0011 Series Number
// * 0018 0024 Sequence Name
// * 0018 0050 Slice Thickness
// * 0028 0010 Rows
// * 0028 0011 Columns
// If this is not enough for your specific case you can always add some more
// restrictions using the \code{AddSeriesRestriction()} method. In this example we will use
// the DICOM Tag: 0008 0021 DA 1 Series Date, to sub-refine each series. The format
// for passing the argument is a string containing first the group then the element
// of the DICOM tag, separed by a pipe (|) sign.
//
//
// \index{itk::GDCMSeriesFileNames!SetDirectory()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::GDCMSeriesFileNames NamesGeneratorType;
NamesGeneratorType::Pointer nameGenerator = NamesGeneratorType::New();
nameGenerator->SetUseSeriesDetails( true );
nameGenerator->AddSeriesRestriction("0008|0021" );
nameGenerator->SetDirectory( argv[1] );
// Software Guide : EndCodeSnippet
try
{
std::cout << std::endl << "The directory: " << std::endl;
std::cout << std::endl << argv[1] << std::endl << std::endl;
std::cout << "Contains the following DICOM Series: ";
std::cout << std::endl << std::endl;
// Software Guide : BeginLatex
//
// The GDCMSeriesFileNames object first identifies the list of DICOM series
// that are present in the given directory. We receive that list in a reference
// to a container of strings and then we can do things like printing out all
// the series identifiers that the generator had found. Since the process of
// finding the series identifiers can potentially throw exceptions, it is
// wise to put this code inside a try/catch block.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef std::vector< std::string > SeriesIdContainer;
const SeriesIdContainer & seriesUID = nameGenerator->GetSeriesUIDs();
SeriesIdContainer::const_iterator seriesItr = seriesUID.begin();
SeriesIdContainer::const_iterator seriesEnd = seriesUID.end();
while( seriesItr != seriesEnd )
{
std::cout << seriesItr->c_str() << std::endl;
seriesItr++;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Given that it is common to find multiple DICOM series in the same directory,
// we must tell the GDCM classes what specific series do we want to read. In
// this example we do this by checking first if the user has provided a series
// identifier in the command line arguments. If no series identifier has been
// passed, then we simply use the first series found during the exploration of
// the directory.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::string seriesIdentifier;
if( argc > 3 ) // If no optional series identifier
{
seriesIdentifier = argv[3];
}
else
{
seriesIdentifier = seriesUID.begin()->c_str();
}
// Software Guide : EndCodeSnippet
std::cout << std::endl << std::endl;
std::cout << "Now reading series: " << std::endl << std::endl;
std::cout << seriesIdentifier << std::endl;
std::cout << std::endl << std::endl;
// Software Guide : BeginLatex
//
// We pass the series identifier to the name generator and ask for all the
// filenames associated to that series. This list is returned in a container of
// strings by the \code{GetFileNames()} method.
//
// \index{itk::GDCMSeriesFileNames!GetFileNames()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef std::vector< std::string > FileNamesContainer;
FileNamesContainer fileNames;
fileNames = nameGenerator->GetFileNames( seriesIdentifier );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
//
// The list of filenames can now be passed to the \doxygen{ImageSeriesReader}
// using the \code{SetFileNames()} method.
//
// \index{itk::ImageSeriesReader!SetFileNames()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
reader->SetFileNames( fileNames );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally we can trigger the reading process by invoking the \code{Update()}
// method in the reader. This call as usual is placed inside a \code{try/catch}
// block.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
reader->Update();
}
catch (itk::ExceptionObject &ex)
{
std::cout << ex << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// At this point, we have a volumetric image in memory that we can access by
// invoking the \code{GetOutput()} method of the reader.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// We proceed now to save the volumetric image in another file, as specified by
// the user in the command line arguments of this program. Thanks to the
// ImageIO factory mechanism, only the filename extension is needed to identify
// the file format in this case.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageFileWriter< ImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
typedef itk::NiftiImageIO ImageIOType;
ImageIOType::Pointer niftiIO = ImageIOType::New();
// The NiftiImageIO object is then connected to the
// ImageFileWriter. This will short-circuit the action of the
// ImageIOFactory mechanism. The ImageFileWriter will
// not attempt to look for other ImageIO objects capable of
// performing the writing tasks. It will simply invoke the one provided by
// the user.
writer->SetImageIO( niftiIO );
writer->SetFileName( argv[2] );
writer->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
std::cout << "Writing the image as " << std::endl << std::endl;
std::cout << argv[2] << std::endl << std::endl;
// Software Guide : BeginLatex
//
// The process of writing the image is initiated by invoking the
// \code{Update()} method of the writer.
//
// Software Guide : EndLatex
try
{
// Software Guide : BeginCodeSnippet
writer->Update();
// Software Guide : EndCodeSnippet
}
catch (itk::ExceptionObject &ex)
{
std::cout << ex << std::endl;
return EXIT_FAILURE;
}
}
catch (itk::ExceptionObject &ex)
{
std::cout << ex << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Note that in addition to writing the volumetric image to a file we could
// have used it as the input for any 3D processing pipeline. Keep in mind that
// DICOM is simply a file format and a network protocol. Once the image data
// has been loaded into memory, it behaves as any other volumetric dataset that
// you could have loaded from any other file format.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}