forked from biomedia-mira/masf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
185 lines (137 loc) · 6.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
""" Utility functions. """
import numpy as np
import os
import random
import tensorflow as tf
from tensorflow.contrib.layers.python import layers as tf_layers
from tensorflow.python.platform import flags
import itertools
FLAGS = flags.FLAGS
## Image reader
def get_images(paths, labels, nb_samples=None, shuffle=True):
if nb_samples is not None:
sampler = lambda x: random.sample(x, nb_samples)
else:
sampler = lambda x: x
images = [(i, os.path.join(path, image)) \
for i, path in zip(labels, paths) \
for image in sampler(os.listdir(path))]
if shuffle:
random.shuffle(images)
return images
## Network blocks
def conv_block(inp, cweight, bweight, stride_y=2, stride_x=2, groups=1, reuse=False, scope=''):
stride = [1, stride_y, stride_x, 1]
convolve = lambda i, k: tf.nn.conv2d(i, k, strides=stride, padding='SAME')
if groups==1:
conv_output = tf.nn.bias_add(convolve(inp, cweight), bweight)
else:
input_groups = tf.split(axis=3, num_or_size_splits=groups, value=inp)
weight_groups = tf.split(axis=3, num_or_size_splits=groups, value=cweight)
output_groups = [convolve(i, k) for i, k in zip(input_groups, weight_groups)]
conv = tf.concat(axis=3, values=output_groups)
conv_output = tf.nn.bias_add(conv, bweight)
relu = tf.nn.relu(conv_output)
return relu
def normalize(inp, activation, reuse, scope):
return tf_layers.batch_norm(inp, activation_fn=activation, reuse=reuse, scope=scope)
def max_pool(x, filter_height, filter_width, stride_y, stride_x, padding='SAME'):
"""Create a max pooling layer."""
return tf.nn.max_pool(x, ksize=[1, filter_height, filter_width, 1], strides=[1, stride_y, stride_x, 1], padding=padding)
def lrn(x, radius, alpha, beta, bias=1.0):
"""Create a local response normalization layer."""
return tf.nn.local_response_normalization(x, depth_radius=radius, alpha=alpha, beta=beta, bias=bias)
def dropout(x, keep_prob):
"""Create a dropout layer."""
return tf.nn.dropout(x, keep_prob)
def fc(x, wweight, bweight, activation=None):
"""Create a fully connected layer."""
act = tf.nn.xw_plus_b(x, wweight, bweight)
if activation is 'relu':
return tf.nn.relu(act)
elif activation is 'leaky_relu':
return tf.nn.leaky_relu(act)
elif activation is None:
return act
else:
raise NotImplementedError
## Loss functions
def mse(pred, label):
pred = tf.reshape(pred, [-1])
label = tf.reshape(label, [-1])
return tf.reduce_mean(tf.square(pred-label))
def xent(pred, label):
return tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=label)
def kd(data1, label1, data2, label2, bool_indicator, n_class=7, temperature=2.0):
kd_loss = 0.0
eps = 1e-16
prob1s = []
prob2s = []
for cls in range(n_class):
mask1 = tf.tile(tf.expand_dims(label1[:, cls], -1), [1, n_class])
logits_sum1 = tf.reduce_sum(tf.multiply(data1, mask1), axis=0)
num1 = tf.reduce_sum(label1[:, cls])
activations1 = logits_sum1 * 1.0 / (num1 + eps) # add eps for prevent un-sampled class resulting in NAN
prob1 = tf.nn.softmax(activations1 / temperature)
prob1 = tf.clip_by_value(prob1, clip_value_min=1e-8, clip_value_max=1.0) # for preventing prob=0 resulting in NAN
mask2 = tf.tile(tf.expand_dims(label2[:, cls], -1), [1, n_class])
logits_sum2 = tf.reduce_sum(tf.multiply(data2, mask2), axis=0)
num2 = tf.reduce_sum(label2[:, cls])
activations2 = logits_sum2 * 1.0 / (num2 + eps)
prob2 = tf.nn.softmax(activations2 / temperature)
prob2 = tf.clip_by_value(prob2, clip_value_min=1e-8, clip_value_max=1.0)
KL_div = (tf.reduce_sum(prob1 * tf.log(prob1 / prob2)) + tf.reduce_sum(prob2 * tf.log(prob2 / prob1))) / 2.0
kd_loss += KL_div * bool_indicator[cls]
prob1s.append(prob1)
prob2s.append(prob2)
kd_loss = kd_loss / n_class
return kd_loss, prob1s, prob2s
def JS(data1, label1, data2, label2, bool_indicator, n_class=7, temperature=2.0):
kd_loss = 0.0
eps = 1e-16
prob1s = []
prob2s = []
for cls in range(n_class):
mask1 = tf.tile(tf.expand_dims(label1[:, cls], -1), [1, n_class])
logits_sum1 = tf.reduce_sum(tf.multiply(data1, mask1), axis=0)
num1 = tf.reduce_sum(label1[:, cls])
activations1 = logits_sum1 * 1.0 / (num1 + eps) # add eps for prevent un-sampled class resulting in NAN
prob1 = tf.nn.softmax(activations1 / temperature)
prob1 = tf.clip_by_value(prob1, clip_value_min=1e-8, clip_value_max=1.0) # for preventing prob=0 resulting in NAN
mask2 = tf.tile(tf.expand_dims(label2[:, cls], -1), [1, n_class])
logits_sum2 = tf.reduce_sum(tf.multiply(data2, mask2), axis=0)
num2 = tf.reduce_sum(label2[:, cls])
activations2 = logits_sum2 * 1.0 / (num2 + eps)
prob2 = tf.nn.softmax(activations2 / temperature)
prob2 = tf.clip_by_value(prob2, clip_value_min=1e-8, clip_value_max=1.0)
mean_prob = (prob1 + prob2) / 2
JS_div = (tf.reduce_sum(prob1 * tf.log(prob1 / mean_prob)) + tf.reduce_sum(prob2 * tf.log(prob2 / mean_prob))) / 2.0
kd_loss += JS_div * bool_indicator[cls]
prob1s.append(prob1)
prob2s.append(prob2)
kd_loss = kd_loss / n_class
return kd_loss, prob1s, prob2s
def contrastive(feature1, label1, feature2, label2, bool_indicator=None, margin=50):
l1 = tf.argmax(label1, axis=1)
l2 = tf.argmax(label2, axis=1)
pair = tf.to_float(tf.equal(l1,l2))
delta = tf.reduce_sum(tf.square(feature1-feature2), 1) + 1e-10
match_loss = delta
delta_sqrt = tf.sqrt(delta + 1e-10)
mismatch_loss = tf.square(tf.nn.relu(margin - delta_sqrt))
if bool_indicator is None:
loss = tf.reduce_mean(0.5 * (pair * match_loss + (1-pair) * mismatch_loss))
else:
loss = 0.5 * tf.reduce_sum(match_loss*pair)/tf.reduce_sum(pair)
debug_dist_positive = tf.reduce_sum(delta_sqrt * pair)/tf.reduce_sum(pair)
debug_dist_negative = tf.reduce_sum(delta_sqrt * (1-pair))/tf.reduce_sum(1-pair)
return loss, pair, delta, debug_dist_positive, debug_dist_negative
def compute_distance(feature1, label1, feature2, label2):
l1 = tf.argmax(label1, axis=1)
l2 = tf.argmax(label2, axis=1)
pair = tf.to_float(tf.equal(l1,l2))
delta = tf.reduce_sum(tf.square(feature1-feature2), 1)
delta_sqrt = tf.sqrt(delta + 1e-16)
dist_positive_pair = tf.reduce_sum(delta_sqrt * pair)/tf.reduce_sum(pair)
dist_negative_pair = tf.reduce_sum(delta_sqrt * (1-pair))/tf.reduce_sum(1-pair)
return dist_positive_pair, dist_negative_pair