-
Notifications
You must be signed in to change notification settings - Fork 42
/
transform.py
93 lines (74 loc) · 3.2 KB
/
transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from __future__ import division
import time
import click
import numpy as np
import nn
import data
import tta
import util
@click.command()
@click.option('--cnf', default='configs/c_512_4x4_32.py', show_default=True,
help="Path or name of configuration module.")
@click.option('--n_iter', default=1, show_default=True,
help="Iterations for test time averaging.")
@click.option('--skip', default=0, show_default=True,
help="Number of test time averaging iterations to skip.")
@click.option('--test', is_flag=True, default=False, show_default=True,
help="Extract features for test set. Ignored if --test_dir is "
"specified.")
@click.option('--train', is_flag=True, default=False, show_default=True,
help="Extract features for training set.")
@click.option('--weights_from', default=None, show_default=True,
help='Path to weights file.', type=str)
@click.option('--test_dir', default=None, show_default=True,
help="Override directory with test set images.")
def transform(cnf, n_iter, skip, test, train, weights_from, test_dir):
config = util.load_module(cnf).config
config.cnf['batch_size_train'] = 128
config.cnf['batch_size_test'] = 128
runs = {}
if train:
runs['train'] = config.get('train_dir')
if test or test_dir:
runs['test'] = test_dir or config.get('test_dir')
net = nn.create_net(config)
if weights_from is None:
net.load_params_from(config.weights_file)
print("loaded weights from {}".format(config.weights_file))
else:
weights_from = str(weights_from)
net.load_params_from(weights_from)
print("loaded weights from {}".format(weights_from))
if n_iter > 1:
tfs, color_vecs = tta.build_quasirandom_transforms(
n_iter, skip=skip, color_sigma=config.cnf['sigma'],
**config.cnf['aug_params'])
else:
tfs, color_vecs = tta.build_quasirandom_transforms(
n_iter, skip=skip, color_sigma=0.0,
**data.no_augmentation_params)
for run, directory in sorted(runs.items(), reverse=True):
print("extracting features for files in {}".format(directory))
tic = time.time()
files = data.get_image_files(directory)
Xs, Xs2 = None, None
for i, (tf, color_vec) in enumerate(zip(tfs, color_vecs), start=1):
print("{} transform iter {}".format(run, i))
X = net.transform(files, transform=tf, color_vec=color_vec)
if Xs is None:
Xs = X
Xs2 = X**2
else:
Xs += X
Xs2 += X**2
print('took {:6.1f} seconds'.format(time.time() - tic))
if i % 10 == 0 or n_iter < 5:
std = np.sqrt((Xs2 - Xs**2 / i) / (i - 1))
if i % 50 == 0:
config.save_features(Xs / i, i, skip=skip,
test=True if run == 'test' else False)
config.save_std(std, i, skip=skip,
test=True if run == 'test' else False)
print('saved {} iterations'.format(i))
if __name__ == '__main__':
transform()