-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpretrain.py
240 lines (184 loc) · 10.2 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import argparse
import os
import pathlib
import time
import numpy as np
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.nn as nn
import yaml
from monai.data import decollate_batch
from torch.autograd import Variable
from torch.utils.tensorboard import SummaryWriter
from dataset.brats import get_datasets_train_rf_forpretrain, get_datasets_brats20_rf
from loss import EDiceLoss
from loss.dice import EDiceLoss_Val
from utils import AverageMeter, ProgressMeter, save_checkpoint, reload_ckpt_bis, reload_ckpt, \
count_parameters, save_metrics, save_args_1, inference, post_trans, dice_metric, \
dice_metric_batch
from model.Unet import Unet_missing
from torch.cuda.amp import autocast as autocast
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = False
#torch.cuda.set_device(0)
parser = argparse.ArgumentParser(description='')
# DO not use data_aug argument this argument!!
parser.add_argument('-j', '--workers', default=12, type=int, metavar='N',
help='number of data loading workers (default: 2).')
parser.add_argument('--mdp', default=3, type=int, metavar='N',
help='number of data loading workers (default: 2).')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('--epochs', default=600, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=1, type=int, metavar='N', help='mini-batch size (default: 1)')
parser.add_argument('--lr', '--learning-rate', default=3e-4, type=float, metavar='LR', help='initial learning rate',
dest='lr')
parser.add_argument('--wd', '--weight-decay', default=0, type=float,
metavar='W', help='weight decay (default: 0)',
dest='weight_decay')
parser.add_argument('--mask_ratio', default=0.875, type=float, help='mask ratio of pretrain')
parser.add_argument('--model_type', type=str, default='vtnet', choices=['vtnet', 'cnnnet'])
parser.add_argument('--dataset', type=str, default='brats18', choices=['brats18', 'brats20'])
parser.add_argument('--devices', default='0', type=str, help='Set the CUDA_VISIBLE_DEVICES env var from this string')
parser.add_argument('--exp_name', default='patch16mask875_mdp3_inversion_reg2_005', type=str, help='exp name')
parser.add_argument('--val', default=50, type=int, help="how often to perform validation step")
parser.add_argument('--fold', default=0, type=int, help="Split number (0 to 4)")
parser.add_argument('--batch_size', default=1, type=int, help="Split number (0 to 4)")
parser.add_argument('--num_classes', type=int,
default=4, help='output channel of network')
parser.add_argument('--seed', type=int,
default=1234, help='random seed')
parser.add_argument('--cfg', type=str, default="configs/vt_unet_costum.yaml", metavar="FILE",
help='path to config file', )
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece')
parser.add_argument('--resume', default=False, type=bool, help='resume from checkpoint')
parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps")
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true', help='Test throughput only')
def main(args):
# setup
ngpus = torch.cuda.device_count()
print(f"Working with {ngpus} GPUs")
args.save_folder_1 = pathlib.Path(f"./runs/{args.exp_name}/model_1")
args.save_folder_1.mkdir(parents=True, exist_ok=True)
args.seg_folder_1 = args.save_folder_1 / "segs"
args.seg_folder_1.mkdir(parents=True, exist_ok=True)
args.save_folder_1 = args.save_folder_1.resolve()
save_args_1(args)
t_writer_1 = SummaryWriter(str(args.save_folder_1))
args.checkpoint_folder = pathlib.Path(f"./runs{args.exp_name}/model_1")
model_1 = Unet_missing(input_shape = [128,128,128], pre_train = True, mask_ratio = args.mask_ratio, mdp = args.mdp)
limage = []
ori_para = []
for pname, p in model_1.named_parameters():
if pname.endswith("limage"): # limage: modality completion image
limage.append(p)
else:
ori_para.append(p)
model_1 = nn.DataParallel(model_1)
print(f"total number of trainable parameters {count_parameters(model_1)}")
print(args)
model_1 = model_1.cuda()
model_file = args.save_folder_1 / "model.txt"
with model_file.open("w") as f:
print(model_1, file=f)
params = model_1.parameters()
optimizer = torch.optim.Adam([{"params": ori_para}, {"params": limage, "lr": 0.005}], lr=args.lr, weight_decay=args.weight_decay)
if args.dataset == "brats18":
full_train_dataset, l_val_dataset, _, _ = get_datasets_train_rf_forpretrain(args.seed, fold_number=args.fold)
if args.dataset == "brats20":
full_train_dataset, l_val_dataset, _, _ = get_datasets_brats20_rf(args.seed, fold_number=args.fold)
train_loader = torch.utils.data.DataLoader(full_train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True)
val_loader = torch.utils.data.DataLoader(l_val_dataset, batch_size=1, shuffle=False,
pin_memory=True, num_workers=args.workers)
print("Train dataset number of batch:", len(train_loader))
print("Val dataset number of batch:", len(val_loader))
# Actual Train loop
best_1 = 0.0
patients_perf = []
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs)
print("start training now!")
for epoch in range(args.epochs):
if epoch < args.start_epoch:
scheduler.step()
continue
try:
# do_epoch for one epoch
ts = time.perf_counter()
# Setup
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses_ = AverageMeter('Loss', ':.4e')
mode = "train" if model_1.training else "val"
batch_per_epoch = len(train_loader)
progress = ProgressMeter(
batch_per_epoch,
[batch_time, data_time, losses_],
prefix=f"{mode} Epoch: [{epoch}]")
end = time.perf_counter()
metrics = []
for i, batch in enumerate(zip(train_loader)):
#torch.cuda.empty_cache()
# measure data loading time
data_time.update(time.perf_counter() - end)
inputs_S1, labels_S1 = batch[0]["image"].float(), batch[0]["label"].float()
patch_locations = batch[0]["crop_indexes"]
inputs_S1, labels_S1 = Variable(inputs_S1), Variable(labels_S1)
inputs_S1, labels_S1 = inputs_S1.cuda(), labels_S1.cuda()
optimizer.zero_grad()
segs_S1,mask_ratio,_,_= model_1(inputs_S1, patch_locations)
loss_ = torch.pow((inputs_S1-segs_S1), 2).mean()
loss2 = torch.norm(model_1.module.limage - model_1.module.limage.mean((2,3,4), keepdim = True), 2).mean()
loss = loss_ + loss2*.005
# compute gradient and do SGD step
loss.backward() #为了梯度放大
optimizer.step()
# measure accuracy and record loss_
if not np.isnan(loss_.item()):
losses_.update(loss_.item())
else:
print("NaN in model loss!!")
t_writer_1.add_scalar(f"Loss/{mode}{''}",
loss_.item(),
global_step=batch_per_epoch * epoch + i)
t_writer_1.add_scalar("lr", optimizer.param_groups[0]['lr'],
global_step=epoch * batch_per_epoch + i)
# measure elapsed time
batch_time.update(time.perf_counter() - end)
end = time.perf_counter()
# Display progress
progress.display(i)
if scheduler is not None:
scheduler.step()
t_writer_1.add_scalar(f"SummaryLoss/train", losses_.avg, epoch)
te = time.perf_counter()
print(f"Train Epoch done in {te - ts} s")
# Validate at the end of epoch every val step
if (epoch + 1) % args.val == 0:
model_dict = model_1.state_dict()
save_checkpoint(
dict(
epoch=epoch,
state_dict=model_dict,
optimizer=optimizer.state_dict(),
scheduler=scheduler.state_dict(),
),
save_folder=args.save_folder_1, )
except KeyboardInterrupt:
print("Stopping training loop, doing benchmark")
break
if __name__ == '__main__':
arguments = parser.parse_args()
#os.environ['CUDA_VISIBLE_DEVICES'] = arguments.devices
main(arguments)