-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_transformer_3.py
159 lines (130 loc) · 5.08 KB
/
train_transformer_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import math
import numpy as np
import torch
from fastprogress import progress_bar
from functools import partial
import wandb
from src.nanogpt.model import (
GPTConfig,
GPT
)
from src.vqvae.model import (
VQVAE
)
from src.utils import compose
if __name__ == "__main__":
device = torch.device("cuda")
vqvae: VQVAE = torch.load("./saved_models/3_27_24/vqvae.pt")
gpt_config = GPTConfig(
block_size=256 + 1,
vocab_size=1024 + 2,
n_layer=12,
n_head=12,
n_embd=768,
dropout=0.0,
bias=False
)
gpt = GPT(gpt_config)
train_x: torch.Tensor = compose(
lambda x: x / 255.0,
partial(torch.permute, dims=(0, 3, 1, 2)),
partial(torch.squeeze, dim=1),
torch.Tensor.float,
torch.from_numpy,
np.load
)("./datasets/3_25_24/frames.npy")
vqvae = vqvae.to(device)
gpt = gpt.to(device)
batch_size = 4
gradient_accumulation_steps = 10
epochs = 20
learning_rate = 6e-4
optimizer = gpt.configure_optimizers(
weight_decay=1e-1,
learning_rate=learning_rate,
betas=(0.9, 0.95),
device_type=device
)
decay_lr = True
warmup_iters = 200
lr_decay_iters = 6000
min_lr = 6e-5
def get_lr(it):
# 1) linear warmup for warmup_iters steps
if it < warmup_iters:
return learning_rate * it / warmup_iters
# 2) if it > lr_decay_iters, return min learning rate
if it > lr_decay_iters:
return min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
return min_lr + coeff * (learning_rate - min_lr)
regenerate = False
if regenerate:
with torch.no_grad():
group_size = 100
train_i = []
vqvae.eval()
print("Tokenizing image dataset...\n")
for i in progress_bar(range(0, train_x.size(0), group_size)):
group_x = train_x[i : i + group_size].to(device)
_, _, _, indices = vqvae.quantize(group_x)
train_i.append(indices)
train_i = torch.concatenate(train_i, dim=0)
print("\nFinished tokenizing dataset.\ntrain_i.shape =", train_i.shape)
np.save("./datasets/3_25_24/indices.npy", train_i.cpu().numpy())
wandb.init(project="vqvae-v1-nanogpt")
iter_num = 0
for epoch in range(epochs):
total_batch_loss = 0
@torch.no_grad()
def sample_imgs():
gpt.eval()
start_token = torch.tensor([[ 1024 ]], device=device).repeat(4, 1)
new_tokens = gpt.generate(start_token, 256, temperature=0.9)[:, 1:]
new_tokens = torch.minimum(new_tokens, torch.ones_like(new_tokens) * (1024 - 1))
# un-quantize
z_quantized = []
for i in range(new_tokens.size(0)):
embeddings: torch.Tensor = vqvae.vq.e_i_ts[:, new_tokens[i]]
embeddings = embeddings.reshape(-1, 16, 16)
z_quantized.append(embeddings)
z_quantized = torch.stack(z_quantized)
imgs: torch.Tensor = vqvae.decoder(z_quantized)
imgs: np.ndarray = imgs.cpu().permute(0, 2, 3, 1).numpy()
imgs = (imgs.clip(0.0, 1.0) * 255.0).astype(np.uint8)
imgs = [wandb.Image(img, caption=f"Reconstructed image {i}") for i, img in enumerate(imgs)]
gpt.train()
return imgs
gpt.train()
for batch_idx, idx in enumerate(progress_bar(range(0, train_x.size(0), batch_size))):
# Get images
batch_x = train_x[batch_idx : batch_idx + batch_size].to(device)
# Compute vocab
with torch.no_grad():
_, _, _, indices = vqvae.quantize(batch_x)
# Pass through GPT
start_token = torch.tensor([[ 1024 ]], device=device).repeat(batch_size, 1)
end_token = torch.tensor([[ 1025 ]], device=device).repeat(batch_size, 1)
tokens = torch.cat([start_token, indices, end_token], dim=1)
x = tokens[:, :-1].contiguous()
y = tokens[:, 1:].contiguous()
logits, loss = gpt(x, y)
loss.backward()
total_batch_loss += loss.item()
if (batch_idx + 1) % gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
lr = get_lr(iter_num) if decay_lr else learning_rate
for param_group in optimizer.param_groups:
param_group['lr'] = lr
iter_num += 1
log_dict = dict()
log_dict["batch_los"] = total_batch_loss / (batch_size * gradient_accumulation_steps)
log_dict["learning_rate"] = lr
if iter_num % 50 == 0:
log_dict["examples"] = sample_imgs()
wandb.log(log_dict)
total_batch_loss = 0